# Code for projections and other fun stuff involving supermeshes.
import firedrake
import ctypes
import sys
from firedrake.cython.supermeshimpl import assemble_mixed_mass_matrix as ammm, intersection_finder
from firedrake.mg.utils import get_level
from firedrake.petsc import PETSc
from firedrake.mg.kernels import to_reference_coordinates, compile_element
from firedrake.utility_meshes import UnitTriangleMesh, UnitTetrahedronMesh
from firedrake.functionspace import FunctionSpace
from firedrake.assemble import assemble
from firedrake.ufl_expr import TestFunction, TrialFunction
import firedrake.mg.utils as utils
from firedrake.utils import complex_mode, ScalarType
import ufl
from ufl import inner, dx
import numpy
from pyop2.sparsity import get_preallocation
from pyop2.compilation import load
from pyop2.mpi import COMM_SELF
from pyop2.utils import get_petsc_dir
__all__ = ["assemble_mixed_mass_matrix", "intersection_finder"]
class BlockMatrix(object):
def __init__(self, mat, dimension):
self.mat = mat
self.dimension = dimension
def mult(self, mat, x, y):
sizes = self.mat.getSizes()
for i in range(self.dimension):
start = i
stride = self.dimension
xa = x.array_r[start::stride]
ya = y.array_r[start::stride]
xi = PETSc.Vec().createWithArray(xa, size=sizes[1], comm=x.comm)
yi = PETSc.Vec().createWithArray(ya, size=sizes[0], comm=y.comm)
self.mat.mult(xi, yi)
y.array[start::stride] = yi.array_r
def multTranspose(self, mat, x, y):
sizes = self.mat.getSizes()
for i in range(self.dimension):
start = i
stride = self.dimension
xa = x.array_r[start::stride]
ya = y.array_r[start::stride]
xi = PETSc.Vec().createWithArray(xa, size=sizes[0], comm=x.comm)
yi = PETSc.Vec().createWithArray(ya, size=sizes[1], comm=y.comm)
self.mat.multTranspose(xi, yi)
y.array[start::stride] = yi.array_r
[docs]
@PETSc.Log.EventDecorator()
def assemble_mixed_mass_matrix(V_A, V_B):
"""
Construct the mixed mass matrix of two function spaces,
using the TrialFunction from V_A and the TestFunction
from V_B.
"""
if len(V_A) > 1 or len(V_B) > 1:
raise NotImplementedError("Sorry, only implemented for non-mixed spaces")
if V_A.ufl_element().mapping() != "identity" or V_B.ufl_element().mapping() != "identity":
msg = """
Sorry, only implemented for affine maps for now. To do non-affine, we'd need to
import much more of the assembly engine of UFL/TSFC/etc to do the assembly on
each supermesh cell.
"""
raise NotImplementedError(msg)
mesh_A = V_A.mesh()
mesh_B = V_B.mesh()
dim = mesh_A.geometric_dimension()
assert dim == mesh_B.geometric_dimension()
assert dim == mesh_A.topological_dimension()
assert dim == mesh_B.topological_dimension()
(mh_A, level_A) = get_level(mesh_A)
(mh_B, level_B) = get_level(mesh_B)
if mesh_A is mesh_B:
def likely(cell_A):
return [cell_A]
else:
if (mh_A is None or mh_B is None) or (mh_A is not mh_B):
# No mesh hierarchy structure, call libsupermesh for
# intersection finding
intersections = intersection_finder(mesh_A, mesh_B)
likely = intersections.__getitem__
else:
# We do have a mesh hierarchy, use it
if abs(level_A - level_B) > 1:
raise NotImplementedError("Only works for transferring between adjacent levels for now.")
# What are the cells of B that (probably) intersect with a given cell in A?
if level_A > level_B:
cell_map = mh_A.fine_to_coarse_cells[level_A]
def likely(cell_A):
return cell_map[cell_A]
elif level_A < level_B:
cell_map = mh_A.coarse_to_fine_cells[level_A]
def likely(cell_A):
return cell_map[cell_A]
assert V_A.value_size == V_B.value_size
orig_value_size = V_A.value_size
if V_A.value_size > 1:
V_A = firedrake.FunctionSpace(mesh_A, V_A.ufl_element().sub_elements[0])
if V_B.value_size > 1:
V_B = firedrake.FunctionSpace(mesh_B, V_B.ufl_element().sub_elements[0])
assert V_A.value_size == 1
assert V_B.value_size == 1
preallocator = PETSc.Mat().create(comm=mesh_A._comm)
preallocator.setType(PETSc.Mat.Type.PREALLOCATOR)
rset = V_B.dof_dset
cset = V_A.dof_dset
nrows = rset.layout_vec.getSizes()
ncols = cset.layout_vec.getSizes()
preallocator.setLGMap(rmap=rset.scalar_lgmap, cmap=cset.scalar_lgmap)
preallocator.setSizes(size=(nrows, ncols), bsize=1)
preallocator.setUp()
zeros = numpy.zeros((V_B.cell_node_map().arity, V_A.cell_node_map().arity), dtype=ScalarType)
for cell_A, dofs_A in enumerate(V_A.cell_node_map().values):
for cell_B in likely(cell_A):
dofs_B = V_B.cell_node_map().values_with_halo[cell_B, :]
preallocator.setValuesLocal(dofs_B, dofs_A, zeros)
preallocator.assemble()
dnnz, onnz = get_preallocation(preallocator, nrows[0])
# Unroll from block to AIJ
dnnz = dnnz * cset.cdim
dnnz = numpy.repeat(dnnz, rset.cdim)
onnz = onnz * cset.cdim
onnz = numpy.repeat(onnz, cset.cdim)
preallocator.destroy()
assert V_A.value_size == V_B.value_size
rdim = V_B.dof_dset.cdim
cdim = V_A.dof_dset.cdim
#
# Preallocate M_AB.
#
mat = PETSc.Mat().create(comm=mesh_A._comm)
mat.setType(PETSc.Mat.Type.AIJ)
rsizes = tuple(n * rdim for n in nrows)
csizes = tuple(c * cdim for c in ncols)
mat.setSizes(size=(rsizes, csizes),
bsize=(rdim, cdim))
mat.setPreallocationNNZ((dnnz, onnz))
mat.setLGMap(rmap=rset.lgmap, cmap=cset.lgmap)
# TODO: Boundary conditions not handled.
mat.setOption(mat.Option.IGNORE_OFF_PROC_ENTRIES, False)
mat.setOption(mat.Option.NEW_NONZERO_ALLOCATION_ERR, True)
mat.setOption(mat.Option.KEEP_NONZERO_PATTERN, True)
mat.setOption(mat.Option.UNUSED_NONZERO_LOCATION_ERR, False)
mat.setOption(mat.Option.IGNORE_ZERO_ENTRIES, True)
mat.setUp()
evaluate_kernel_A = compile_element(ufl.Coefficient(V_A), name="evaluate_kernel_A")
evaluate_kernel_B = compile_element(ufl.Coefficient(V_B), name="evaluate_kernel_B")
# We only need one of these since we assume that the two meshes both have CG1 coordinates
to_reference_kernel = to_reference_coordinates(mesh_A.coordinates.ufl_element())
if dim == 2:
reference_mesh = UnitTriangleMesh(comm=COMM_SELF)
else:
reference_mesh = UnitTetrahedronMesh(comm=COMM_SELF)
evaluate_kernel_S = compile_element(ufl.Coefficient(reference_mesh.coordinates.function_space()), name="evaluate_kernel_S")
V_S_A = FunctionSpace(reference_mesh, V_A.ufl_element())
V_S_B = FunctionSpace(reference_mesh, V_B.ufl_element())
M_SS = assemble(inner(TrialFunction(V_S_A), TestFunction(V_S_B)) * dx)
M_SS = M_SS.M.handle[:, :]
node_locations_A = utils.physical_node_locations(V_S_A).dat.data_ro_with_halos
node_locations_B = utils.physical_node_locations(V_S_B).dat.data_ro_with_halos
num_nodes_A = node_locations_A.shape[0]
num_nodes_B = node_locations_B.shape[0]
to_reference_kernel = to_reference_coordinates(mesh_A.coordinates.ufl_element())
supermesh_kernel_str = """
#include "libsupermesh-c.h"
#include <petsc.h>
%(to_reference)s
%(evaluate_S)s
%(evaluate_A)s
%(evaluate_B)s
#define complex_mode %(complex_mode)s
#define PrintInfo(...) do { if (PetscLogPrintInfo) printf(__VA_ARGS__); } while (0)
#define FPrintInfo(...) do { if (PetscLogPrintInfo) fprintf(stderr, __VA_ARGS__); } while (0)
static void print_array(PetscScalar *arr, int d)
{
for(int j=0; j<d; j++)
FPrintInfo("%%+.2f ", arr[j]);
}
static void print_coordinates(PetscScalar *simplex, int d)
{
for(int i=0; i<d+1; i++)
{
PrintInfo("\t");
print_array(&simplex[d*i], d);
PrintInfo("\\n");
}
}
#if complex_mode
static void seperate_real_and_imag(PetscScalar *simplex, double *real_simplex, double *imag_simplex, int d)
{
for(int i=0; i<d+1; i++)
{
for(int j=0; j<d; j++)
{
real_simplex[d*i+j] = creal(simplex[d*i+j]);
imag_simplex[d*i+j] = cimag(simplex[d*i+j]);
}
}
}
static void merge_back_to_simplex(PetscScalar* simplex, double* real_simplex, double* imag_simplex, int d)
{
print_coordinates(simplex,d);
for(int i=0; i<d+1; i++)
{
for(int j=0; j<d; j++)
{
simplex[d*i+j] = real_simplex[d*i+j]+imag_simplex[d*i+j]*_Complex_I;
}
}
}
#endif
int supermesh_kernel(PetscScalar* simplex_A, PetscScalar* simplex_B, PetscScalar* simplices_C, PetscScalar* nodes_A, PetscScalar* nodes_B, PetscScalar* M_SS, PetscScalar* outptr, int num_ele)
{
#define d %(dim)s
#define num_nodes_A %(num_nodes_A)s
#define num_nodes_B %(num_nodes_B)s
double simplex_ref_measure;
PrintInfo("simplex_A coordinates\\n");
print_coordinates(simplex_A, d);
PrintInfo("simplex_B coordinates\\n");
print_coordinates(simplex_B, d);
int num_elements = num_ele;
if (d == 2) simplex_ref_measure = 0.5;
else if (d == 3) simplex_ref_measure = 1.0/6;
PetscScalar R_AS[num_nodes_A][num_nodes_A];
PetscScalar R_BS[num_nodes_B][num_nodes_B];
PetscScalar coeffs_A[%(num_nodes_A)s] = {0.};
PetscScalar coeffs_B[%(num_nodes_B)s] = {0.};
PetscScalar reference_nodes_A[num_nodes_A][d];
PetscScalar reference_nodes_B[num_nodes_B][d];
#if complex_mode
double real_simplex_A[d*(d+1)];
double imag_simplex_A[d*(d+1)];
seperate_real_and_imag(simplex_A, real_simplex_A, imag_simplex_A, d);
double real_simplex_B[d*(d+1)];
double imag_simplex_B[d*(d+1)];
seperate_real_and_imag(simplex_B, real_simplex_B, imag_simplex_B, d);
double real_simplices_C[num_elements*d*(d+1)];
double imag_simplices_C[num_elements*d*(d+1)];
for (int ii=0; ii<num_elements*d*(d+1); ++ii) imag_simplices_C[ii] = 0.;
%(libsupermesh_intersect_simplices)s(real_simplex_A, real_simplex_B, real_simplices_C, &num_elements);
merge_back_to_simplex(simplex_A, real_simplex_A, imag_simplex_A, d);
merge_back_to_simplex(simplex_B, real_simplex_B, imag_simplex_B, d);
for(int s=0; s<num_elements; s++)
{
PetscScalar* simplex_C = &simplices_C[s * d * (d+1)];
double* real_simplex_C = &real_simplices_C[s * d * (d+1)];
double* imag_simplex_C = &imag_simplices_C[s * d * (d+1)];
merge_back_to_simplex(simplex_C, real_simplex_C, imag_simplex_C, d);
}
#else
%(libsupermesh_intersect_simplices)s(simplex_A, simplex_B, simplices_C, &num_elements);
#endif
PrintInfo("Supermesh consists of %%i elements\\n", num_elements);
// would like to do this
//PetscScalar MAB[%(num_nodes_A)s][%(num_nodes_B)s] = (PetscScalar (*)[%(num_nodes_B)s])outptr;
// but have to do this instead because we don't grok C
PetscScalar (*MAB)[num_nodes_A] = (PetscScalar (*)[num_nodes_A])outptr;
PetscScalar (*MSS)[num_nodes_A] = (PetscScalar (*)[num_nodes_A])M_SS; // note the underscore
for ( int i = 0; i < num_nodes_B; i++ ) {
for (int j = 0; j < num_nodes_A; j++) {
MAB[i][j] = 0.0;
}
}
for(int s=0; s<num_elements; s++)
{
PetscScalar* simplex_S = &simplices_C[s * d * (d+1)];
double simplex_S_measure;
#if complex_mode
double real_simplex_S[d*(d+1)];
double imag_simplex_S[d*(d+1)];
seperate_real_and_imag(simplex_S, real_simplex_S, imag_simplex_S, d);
%(libsupermesh_simplex_measure)s(real_simplex_S, &simplex_S_measure);
merge_back_to_simplex(simplex_S, real_simplex_S, imag_simplex_S, d);
#else
%(libsupermesh_simplex_measure)s(simplex_S, &simplex_S_measure);
#endif
PrintInfo("simplex_S coordinates with measure %%f\\n", simplex_S_measure);
print_coordinates(simplex_S, d);
PrintInfo("Start mapping nodes for V_A\\n");
PetscScalar physical_nodes_A[num_nodes_A][d];
for(int n=0; n < num_nodes_A; n++) {
PetscScalar* reference_node_location = &nodes_A[n*d];
PetscScalar* physical_node_location = physical_nodes_A[n];
for (int j=0; j < d; j++) physical_node_location[j] = 0.0;
pyop2_kernel_evaluate_kernel_S(physical_node_location, simplex_S, reference_node_location);
PrintInfo("\\tNode ");
print_array(reference_node_location, d);
PrintInfo(" mapped to ");
print_array(physical_node_location, d);
PrintInfo("\\n");
}
PrintInfo("Start mapping nodes for V_B\\n");
PetscScalar physical_nodes_B[num_nodes_B][d];
for(int n=0; n < num_nodes_B; n++) {
PetscScalar* reference_node_location = &nodes_B[n*d];
PetscScalar* physical_node_location = physical_nodes_B[n];
for (int j=0; j < d; j++) physical_node_location[j] = 0.0;
pyop2_kernel_evaluate_kernel_S(physical_node_location, simplex_S, reference_node_location);
PrintInfo("\\tNode ");
print_array(reference_node_location, d);
PrintInfo(" mapped to ");
print_array(physical_node_location, d);
PrintInfo("\\n");
}
PrintInfo("==========================================================\\n");
PrintInfo("Start pulling back dof from S into reference space for A.\\n");
for(int n=0; n < num_nodes_A; n++) {
for(int i=0; i<d; i++) reference_nodes_A[n][i] = 0.;
to_reference_coords_kernel(reference_nodes_A[n], physical_nodes_A[n], simplex_A);
PrintInfo("Pulling back ");
print_array(physical_nodes_A[n], d);
PrintInfo(" to ");
print_array(reference_nodes_A[n], d);
PrintInfo("\\n");
}
PrintInfo("Start pulling back dof from S into reference space for B.\\n");
for(int n=0; n < num_nodes_B; n++) {
for(int i=0; i<d; i++) reference_nodes_B[n][i] = 0.;
to_reference_coords_kernel(reference_nodes_B[n], physical_nodes_B[n], simplex_B);
PrintInfo("Pulling back ");
print_array(physical_nodes_B[n], d);
PrintInfo(" to ");
print_array(reference_nodes_B[n], d);
PrintInfo("\\n");
}
PrintInfo("Start evaluating basis functions of V_A at dofs for V_A on S\\n");
for(int i=0; i<num_nodes_A; i++) {
coeffs_A[i] = 1.;
for(int j=0; j<num_nodes_A; j++) {
R_AS[i][j] = 0.;
pyop2_kernel_evaluate_kernel_A(&R_AS[i][j], coeffs_A, reference_nodes_A[j]);
}
print_array(R_AS[i], num_nodes_A);
PrintInfo("\\n");
coeffs_A[i] = 0.;
}
PrintInfo("Start evaluating basis functions of V_B at dofs for V_B on S\\n");
for(int i=0; i<num_nodes_B; i++) {
coeffs_B[i] = 1.;
for(int j=0; j<num_nodes_B; j++) {
R_BS[i][j] = 0.;
pyop2_kernel_evaluate_kernel_B(&R_BS[i][j], coeffs_B, reference_nodes_B[j]);
}
print_array(R_BS[i], num_nodes_B);
PrintInfo("\\n");
coeffs_B[i] = 0.;
}
PrintInfo("Start doing the matmatmat mult\\n");
for ( int i = 0; i < num_nodes_B; i++ ) {
for (int j = 0; j < num_nodes_A; j++) {
for ( int k = 0; k < num_nodes_B; k++) {
for ( int l = 0; l < num_nodes_A; l++) {
MAB[i][j] += (simplex_S_measure/simplex_ref_measure) * R_BS[i][k] * MSS[k][l] * R_AS[j][l];
}
}
}
}
}
return num_elements;
}
""" % {
"evaluate_S": str(evaluate_kernel_S),
"evaluate_A": str(evaluate_kernel_A),
"evaluate_B": str(evaluate_kernel_B),
"to_reference": str(to_reference_kernel),
"num_nodes_A": num_nodes_A,
"num_nodes_B": num_nodes_B,
"libsupermesh_simplex_measure": "libsupermesh_triangle_area" if dim == 2 else "libsupermesh_tetrahedron_volume",
"libsupermesh_intersect_simplices": "libsupermesh_intersect_tris_real" if dim == 2 else "libsupermesh_intersect_tets_real",
"dim": dim,
"complex_mode": 1 if complex_mode else 0
}
dirs = get_petsc_dir() + (sys.prefix, )
includes = ["-I%s/include" % d for d in dirs]
libs = ["-L%s/lib" % d for d in dirs]
libs = libs + ["-Wl,-rpath,%s/lib" % d for d in dirs] + ["-lpetsc", "-lsupermesh"]
lib = load(
supermesh_kernel_str, "c", "supermesh_kernel",
cppargs=includes,
ldargs=libs,
argtypes=[ctypes.c_voidp, ctypes.c_voidp, ctypes.c_voidp, ctypes.c_voidp, ctypes.c_voidp, ctypes.c_voidp, ctypes.c_voidp],
restype=ctypes.c_int,
comm=mesh_A._comm
)
ammm(V_A, V_B, likely, node_locations_A, node_locations_B, M_SS, ctypes.addressof(lib), mat)
if orig_value_size == 1:
return mat
else:
(lrows, grows), (lcols, gcols) = mat.getSizes()
lrows *= orig_value_size
grows *= orig_value_size
lcols *= orig_value_size
gcols *= orig_value_size
size = ((lrows, grows), (lcols, gcols))
context = BlockMatrix(mat, orig_value_size)
blockmat = PETSc.Mat().createPython(size, context=context, comm=mat.comm)
blockmat.setUp()
return blockmat