Source code for firedrake.solving

# Copyright (C) 2011 Anders Logg
# Copyright (C) 2012 Graham Markall, Florian Rathgeber
# Copyright (C) 2013 Imperial College London and others.
#
# This file is part of Firedrake, modified from the corresponding file in DOLFIN
#
# Firedrake is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Firedrake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.

__all__ = ["solve"]

import ufl

import firedrake.linear_solver as ls
from firedrake.matrix import AssembledMatrix
import firedrake.variational_solver as vs
from firedrake import dmhooks, function, solving_utils, vector
import firedrake
from firedrake.adjoint_utils import annotate_solve
from firedrake.petsc import PETSc
from firedrake.utils import ScalarType


[docs] @PETSc.Log.EventDecorator() @annotate_solve def solve(*args, **kwargs): r"""Solve linear system Ax = b or variational problem a == L or F == 0. The Firedrake solve() function can be used to solve either linear systems or variational problems. The following list explains the various ways in which the solve() function can be used. *1. Solving linear systems* A linear system Ax = b may be solved by calling .. code-block:: python3 solve(A, x, b, bcs=bcs, solver_parameters={...}) where ``A`` is a :class:`.Matrix` and ``x`` and ``b`` are :class:`.Function`\s. If present, ``bcs`` should be a list of :class:`.DirichletBC`\s and :class:`.EquationBC`\s specifying, respectively, the strong boundary conditions to apply and PDEs to solve on the boundaries. For the format of ``solver_parameters`` see below. Optionally, an argument ``P`` of type :class:`~.MatrixBase` can be passed to construct any preconditioner from; if none is supplied ``A`` is used to construct the preconditioner. .. code-block:: python3 solve(A, x, b, P=P, bcs=bcs, solver_parameters={...}) *2. Solving linear variational problems* A linear variational problem a(u, v) = L(v) for all v may be solved by calling solve(a == L, u, ...), where a is a bilinear form, L is a linear form, u is a :class:`.Function` (the solution). Optional arguments may be supplied to specify boundary conditions or solver parameters. Some examples are given below: .. code-block:: python3 solve(a == L, u) solve(a == L, u, bcs=bc) solve(a == L, u, bcs=[bc1, bc2]) solve(a == L, u, bcs=bcs, solver_parameters={"ksp_type": "gmres"}) The linear solver uses PETSc under the hood and accepts all PETSc options as solver parameters. For example, to solve the system using direct factorisation use: .. code-block:: python3 solve(a == L, u, bcs=bcs, solver_parameters={"ksp_type": "preonly", "pc_type": "lu"}) *3. Solving nonlinear variational problems* A nonlinear variational problem F(u; v) = 0 for all v may be solved by calling solve(F == 0, u, ...), where the residual F is a linear form (linear in the test function v but possibly nonlinear in the unknown u) and u is a :class:`.Function` (the solution). Optional arguments may be supplied to specify boundary conditions, the Jacobian form or solver parameters. If the Jacobian is not supplied, it will be computed by automatic differentiation of the residual form. Some examples are given below: The nonlinear solver uses a PETSc SNES object under the hood. To pass options to it, use the same options names as you would for pure PETSc code. See :class:`~.NonlinearVariationalSolver` for more details. .. code-block:: python3 solve(F == 0, u) solve(F == 0, u, bcs=bc) solve(F == 0, u, bcs=[bc1, bc2]) solve(F == 0, u, bcs, J=J, # Use Newton-Krylov iterations to solve the nonlinear # system, using direct factorisation to solve the linear system. solver_parameters={"snes_type": "newtonls", "ksp_type" : "preonly", "pc_type" : "lu"}) In all three cases, if the operator is singular you can pass a :class:`.VectorSpaceBasis` (or :class:`.MixedVectorSpaceBasis`) spanning the null space of the operator to the solve call using the ``nullspace`` keyword argument. If you need to project the transpose nullspace out of the right hand side, you can do so by using the ``transpose_nullspace`` keyword argument. In the same fashion you can add the near nullspace using the ``near_nullspace`` keyword argument. To exclude Dirichlet boundary condition nodes through the use of a :class`.RestrictedFunctionSpace`, set the ``restrict`` keyword argument to be True. """ assert len(args) > 0 # Call variational problem solver if we get an equation if isinstance(args[0], ufl.classes.Equation): _solve_varproblem(*args, **kwargs) else: # Solve pre-assembled system return _la_solve(*args, **kwargs)
def _solve_varproblem(*args, **kwargs): "Solve variational problem a == L or F == 0" # Extract arguments eq, u, bcs, J, Jp, M, form_compiler_parameters, \ solver_parameters, nullspace, nullspace_T, \ near_nullspace, \ options_prefix, restrict = _extract_args(*args, **kwargs) # Check whether solution is valid if not isinstance(u, (function.Function, vector.Vector)): raise TypeError(f"Provided solution is a '{type(u).__name__}', not a Function") if form_compiler_parameters is None: form_compiler_parameters = {} form_compiler_parameters['scalar_type'] = ScalarType appctx = kwargs.get("appctx", {}) # Solve linear variational problem if isinstance(eq.lhs, (ufl.Form, AssembledMatrix)) and isinstance(eq.rhs, ufl.BaseForm): # Create problem problem = vs.LinearVariationalProblem(eq.lhs, eq.rhs, u, bcs, Jp, form_compiler_parameters=form_compiler_parameters, restrict=restrict) # Create solver and call solve solver = vs.LinearVariationalSolver(problem, solver_parameters=solver_parameters, nullspace=nullspace, transpose_nullspace=nullspace_T, near_nullspace=near_nullspace, options_prefix=options_prefix, appctx=appctx) solver.solve() # Solve nonlinear variational problem else: if eq.rhs != 0: raise TypeError("Only '0' support on RHS of nonlinear Equation, not %r" % eq.rhs) # Create problem problem = vs.NonlinearVariationalProblem(eq.lhs, u, bcs, J, Jp, form_compiler_parameters=form_compiler_parameters, restrict=restrict) # Create solver and call solve solver = vs.NonlinearVariationalSolver(problem, solver_parameters=solver_parameters, nullspace=nullspace, transpose_nullspace=nullspace_T, near_nullspace=near_nullspace, options_prefix=options_prefix, appctx=appctx) solver.solve() def _la_solve(A, x, b, **kwargs): r"""Solve a linear algebra problem. :arg A: the assembled bilinear form, a :class:`.Matrix`. :arg x: the :class:`.Function` to write the solution into. :arg b: the :class:`.Function` defining the right hand side values. :kwarg P: an optional :class:`~.MatrixBase` to construct any preconditioner from; if none is supplied ``A`` is used to construct the preconditioner. :kwarg solver_parameters: optional solver parameters. :kwarg nullspace: an optional :class:`.VectorSpaceBasis` (or :class:`.MixedVectorSpaceBasis`) spanning the null space of the operator. :kwarg transpose_nullspace: as for the nullspace, but used to make the right hand side consistent. :kwarg near_nullspace: as for the nullspace, but used to add the near nullspace. :kwarg options_prefix: an optional prefix used to distinguish PETSc options. If not provided a unique prefix will be created. Use this option if you want to pass options to the solver from the command line in addition to through the ``solver_parameters`` dict. .. note:: This function no longer accepts :class:`.DirichletBC`\s or :class:`.EquationBC`\s as arguments. Any boundary conditions must be applied when assembling the bilinear form as: .. code-block:: python3 A = assemble(a, bcs=[bc1]) solve(A, x, b) Example usage: .. code-block:: python3 _la_solve(A, x, b, solver_parameters=parameters_dict).""" P, bcs, solver_parameters, nullspace, nullspace_T, near_nullspace, \ options_prefix = _extract_linear_solver_args(A, x, b, **kwargs) # Check whether solution is valid if not isinstance(x, (function.Function, vector.Vector)): raise TypeError(f"Provided solution is a '{type(x).__name__}', not a Function") if bcs is not None: raise RuntimeError("It is no longer possible to apply or change boundary conditions after assembling the matrix `A`; pass any necessary boundary conditions to `assemble` when assembling `A`.") solver = ls.LinearSolver(A=A, P=P, solver_parameters=solver_parameters, nullspace=nullspace, transpose_nullspace=nullspace_T, near_nullspace=near_nullspace, options_prefix=options_prefix) if isinstance(x, firedrake.Vector): x = x.function # linear MG doesn't need RHS, supply zero. lvp = vs.LinearVariationalProblem(a=A.a, L=0, u=x, bcs=A.bcs) mat_type = A.mat_type appctx = solver_parameters.get("appctx", {}) ctx = solving_utils._SNESContext(lvp, mat_type=mat_type, pmat_type=mat_type, appctx=appctx, options_prefix=options_prefix) dm = solver.ksp.dm with dmhooks.add_hooks(dm, solver, appctx=ctx): solver.solve(x, b) def _extract_linear_solver_args(*args, **kwargs): valid_kwargs = ["P", "bcs", "solver_parameters", "nullspace", "transpose_nullspace", "near_nullspace", "options_prefix"] if len(args) != 3: raise RuntimeError("Missing required arguments, expecting solve(A, x, b, **kwargs)") for kwarg in kwargs.keys(): if kwarg not in valid_kwargs: raise RuntimeError("Illegal keyword argument '%s'; valid keywords are %s" % (kwarg, ", ".join("'%s'" % kw for kw in valid_kwargs))) P = kwargs.get("P", None) bcs = kwargs.get("bcs", None) solver_parameters = kwargs.get("solver_parameters", {}) nullspace = kwargs.get("nullspace", None) nullspace_T = kwargs.get("transpose_nullspace", None) near_nullspace = kwargs.get("near_nullspace", None) options_prefix = kwargs.get("options_prefix", None) return P, bcs, solver_parameters, nullspace, nullspace_T, near_nullspace, options_prefix def _extract_args(*args, **kwargs): "Extraction of arguments for _solve_varproblem" # Check for use of valid kwargs valid_kwargs = ["bcs", "J", "Jp", "M", "form_compiler_parameters", "solver_parameters", "nullspace", "transpose_nullspace", "near_nullspace", "options_prefix", "appctx", "restrict"] for kwarg in kwargs.keys(): if kwarg not in valid_kwargs: raise RuntimeError("Illegal keyword argument '%s'; valid keywords \ are %s" % (kwarg, ", ".join("'%s'" % kwarg for kwarg in valid_kwargs))) # Extract equation if not len(args) >= 2: raise TypeError("Missing arguments, expecting solve(lhs == rhs, u, bcs=bcs), where bcs is optional") if len(args) > 3: raise TypeError("Too many arguments, expecting solve(lhs == rhs, u, bcs=bcs), where bcs is optional") # Most argument checking happens in NonlinearVariationalProblem, # since otherwise we have to repeat it here and in the direct # constructor. # Extract equation # If we got here, args[0] must be an Equation (via solve call) eq = args[0] # Extract solution function u = args[1] # Extract boundary conditions bcs = _extract_bcs(args[2] if len(args) > 2 else kwargs.get("bcs")) # Extract Jacobian J = kwargs.get("J", None) Jp = kwargs.get("Jp", None) # Extract functional M = kwargs.get("M", None) if M is not None and not isinstance(M, ufl.Form): raise RuntimeError("Expecting goal functional M to be a UFL Form") nullspace = kwargs.get("nullspace", None) nullspace_T = kwargs.get("transpose_nullspace", None) near_nullspace = kwargs.get("near_nullspace", None) # Extract parameters form_compiler_parameters = kwargs.get("form_compiler_parameters", {}) solver_parameters = kwargs.get("solver_parameters", {}) options_prefix = kwargs.get("options_prefix", None) restrict = kwargs.get("restrict", False) return eq, u, bcs, J, Jp, M, form_compiler_parameters, \ solver_parameters, nullspace, nullspace_T, near_nullspace, \ options_prefix, restrict def _extract_bcs(bcs): "Extract and check argument bcs" from firedrake.bcs import BCBase, EquationBC if bcs is None: return () if isinstance(bcs, (BCBase, EquationBC)): return (bcs, ) else: if not isinstance(bcs, (tuple, list)): raise TypeError("bcs must be BCBase, EquationBC, tuple, or list, not '%s'." % type(bcs).__name__) for bc in bcs: if not isinstance(bc, (BCBase, EquationBC)): raise TypeError("Provided boundary condition is a '%s', not a BCBase" % type(bc).__name__) return bcs