Source code for firedrake.pyplot.mpl

import enum
import math
import numpy as np
import numpy.random as randomgen
try:
    import matplotlib.pyplot as plt
except ModuleNotFoundError as e:
    raise ModuleNotFoundError(
        "Error importing matplotlib, you may need to install by executing\n\t"
        "pip install matplotlib"
    ) from e
import matplotlib.colors
import matplotlib.patches
import matplotlib.tri
from matplotlib.path import Path
from matplotlib.lines import Line2D
from matplotlib.collections import LineCollection, PolyCollection
import mpl_toolkits.mplot3d
from mpl_toolkits.mplot3d.art3d import Line3DCollection, Poly3DCollection
from math import factorial
from firedrake import (Interpolate, sqrt, inner, Function, SpatialCoordinate,
                       FunctionSpace, VectorFunctionSpace, PointNotInDomainError,
                       Constant, assemble, dx)
from firedrake.mesh import MeshGeometry
from firedrake.petsc import PETSc
from ufl.domain import extract_unique_domain


__all__ = [
    "plot", "triplot", "tricontourf", "tricontour", "trisurf", "tripcolor",
    "quiver", "streamplot", "FunctionPlotter"
]


def toreal(array, component):
    if array.dtype.kind == "c":
        assert component in {"real", "imag"}
        return getattr(array, component)
    else:
        assert component == "real"
        return array


def _autoscale_view(axes, coords):
    axes.autoscale_view()

    if coords is not None:
        coords = toreal(coords, "real")
    # Dirty hack; autoscale_view doesn't appear to work for 3D plots.
    if isinstance(axes, mpl_toolkits.mplot3d.Axes3D):
        setters = ["set_xlim", "set_ylim", "set_zlim"]
        for setter, idx in zip(setters, range(coords.shape[1])):
            try:
                setter = getattr(axes, setter)
            except AttributeError:
                continue
            amin = coords[:, idx].min()
            amax = coords[:, idx].max()
            extra = (amax - amin) / 20
            if extra == 0.0:
                # 1D interval
                extra = 0.5
            amin -= extra
            amax += extra
            setter(amin, amax)


def _get_collection_types(gdim, tdim):
    if gdim == 2:
        if tdim == 1:
            # Probably a CircleCollection?
            raise NotImplementedError("Didn't get to this yet...")
        elif tdim == 2:
            return LineCollection, PolyCollection
    elif gdim == 3:
        if tdim == 1:
            raise NotImplementedError("Didn't get to this one yet...")
        elif tdim == 2:
            return Line3DCollection, Poly3DCollection
        elif tdim == 3:
            return Poly3DCollection, Poly3DCollection

    raise ValueError("Geometric dimension must be either 2 or 3!")


[docs] @PETSc.Log.EventDecorator() def triplot(mesh, axes=None, interior_kw={}, boundary_kw={}): r"""Plot a mesh colouring marked facet segments Typically boundary segments will be marked and coloured, but interior facets that are marked will also be coloured. The interior and boundary keyword arguments can be any keyword argument for :class:`LineCollection <matplotlib.collections.LineCollection>` and related types. :arg mesh: mesh to be plotted :arg axes: matplotlib :class:`Axes <matplotlib.axes.Axes>` object on which to plot mesh :arg interior_kw: keyword arguments to apply when plotting the mesh interior :arg boundary_kw: keyword arguments to apply when plotting the mesh boundary :return: list of matplotlib :class:`Collection <matplotlib.collections.Collection>` objects """ gdim = mesh.geometric_dimension() tdim = mesh.topological_dimension() BoundaryCollection, InteriorCollection = _get_collection_types(gdim, tdim) quad = mesh.ufl_cell().cellname() == "quadrilateral" if axes is None: figure = plt.figure() if gdim == 3: axes = figure.add_subplot(111, projection='3d') else: axes = figure.add_subplot(111) coordinates = mesh.coordinates element = coordinates.function_space().ufl_element() if element.degree() != 1: # Interpolate to piecewise linear. V = VectorFunctionSpace(mesh, element.family(), 1) coordinates = assemble(Interpolate(coordinates, V)) coords = toreal(coordinates.dat.data_ro_with_halos, "real") result = [] interior_kw = dict(interior_kw) # If the domain isn't a 3D volume, draw the interior. if tdim <= 2: cell_node_map = coordinates.cell_node_map().values_with_halo idx = (tuple(range(tdim + 1)) if not quad else (0, 1, 3, 2)) + (0,) vertices = coords[cell_node_map[:, idx]] interior_kw["edgecolors"] = interior_kw.get("edgecolors", "k") interior_kw["linewidths"] = interior_kw.get("linewidths", 1.0) if gdim == 2: interior_kw["facecolors"] = interior_kw.get("facecolors", "none") interior_collection = InteriorCollection(vertices, **interior_kw) axes.add_collection(interior_collection) result.append(interior_collection) def facet_data(typ): if typ == "interior": facets = mesh.interior_facets node_map = coordinates.interior_facet_node_map() node_map = node_map.values_with_halo[:, :node_map.arity//2] local_facet_ids = facets.local_facet_dat.data_ro_with_halos[:, :1].reshape(-1) elif typ == "exterior": facets = mesh.exterior_facets local_facet_ids = facets.local_facet_dat.data_ro_with_halos node_map = coordinates.exterior_facet_node_map().values_with_halo else: raise ValueError("Unhandled facet type") mask = np.zeros(node_map.shape, dtype=bool) for facet_index, local_facet_index in enumerate(local_facet_ids): mask[facet_index, topology[tdim - 1][local_facet_index]] = True faces = node_map[mask].reshape(-1, tdim) return facets, faces # Add colored lines/polygons for the boundary facets topology = coordinates.function_space().finat_element.cell.get_topology() markers = mesh.exterior_facets.unique_markers color_key = "colors" if tdim <= 2 else "facecolors" boundary_colors = boundary_kw.pop(color_key, None) if boundary_colors is None: # matplotlib.cm.get_cmap was deprecated in Matplotlib 3.9, see: # https://matplotlib.org/3.9.0/api/prev_api_changes/api_changes_3.9.0.html#top-level-cmap-registration-and-access-functions-in-mpl-cm try: cmap = matplotlib.cm.get_cmap("Dark2") except AttributeError: cmap = matplotlib.colormaps["Dark2"] num_markers = len(markers) colors = cmap([k / num_markers for k in range(num_markers)]) else: colors = matplotlib.colors.to_rgba_array(boundary_colors) boundary_kw = dict(boundary_kw) if tdim == 3: boundary_kw["edgecolors"] = boundary_kw.get("edgecolors", "k") boundary_kw["linewidths"] = boundary_kw.get("linewidths", 1.0) for marker, color in zip(markers, colors): vertices = [] for typ in ["interior", "exterior"]: facets, faces = facet_data(typ) face_indices = facets.subset(int(marker)).indices marker_faces = faces[face_indices, :] vertices.append(coords[marker_faces]) vertices = np.concatenate(vertices) _boundary_kw = dict(**{color_key: color, "label": marker}, **boundary_kw) marker_collection = BoundaryCollection(vertices, **_boundary_kw) axes.add_collection(marker_collection) result.append(marker_collection) # Dirty hack to enable legends for 3D volume plots. See the function # `Poly3DCollection.set_3d_properties`. for collection in result: if isinstance(collection, Poly3DCollection): collection._facecolors2d = PolyCollection.get_facecolor(collection) collection._edgecolors2d = PolyCollection.get_edgecolor(collection) _autoscale_view(axes, coords) return result
def _plot_2d_field(method_name, function, *args, complex_component="real", **kwargs): axes = kwargs.pop("axes", None) if axes is None: figure = plt.figure() axes = figure.add_subplot(111) Q = function.function_space() mesh = Q.mesh() if len(function.ufl_shape) == 1: element = function.ufl_element().sub_elements[0] Q = FunctionSpace(mesh, element) function = assemble(Interpolate(sqrt(inner(function, function)), Q)) num_sample_points = kwargs.pop("num_sample_points", 10) function_plotter = FunctionPlotter(mesh, num_sample_points) triangulation = function_plotter.triangulation values = function_plotter(function) method = getattr(axes, method_name) return method(triangulation, toreal(values, complex_component), *args, **kwargs)
[docs] @PETSc.Log.EventDecorator() def tricontourf(function, *args, complex_component="real", **kwargs): r"""Create a filled contour plot of a 2D Firedrake :class:`~.Function` If the input function is a vector field, the magnitude will be plotted. :arg function: the Firedrake :class:`~.Function` to plot :arg args: same as for matplotlib :func:`tricontourf <matplotlib.pyplot.tricontourf>` :kwarg complex_component: If plotting complex data, which component? (``'real'`` or ``'imag'``). Default is ``'real'``. :arg kwargs: same as for matplotlib :return: matplotlib :class:`ContourSet <matplotlib.contour.ContourSet>` object """ return _plot_2d_field("tricontourf", function, *args, complex_component=complex_component, **kwargs)
[docs] @PETSc.Log.EventDecorator() def tricontour(function, *args, complex_component="real", **kwargs): r"""Create a contour plot of a 2D Firedrake :class:`~.Function` If the input function is a vector field, the magnitude will be plotted. :arg function: the Firedrake :class:`~.Function` to plot :arg args: same as for matplotlib :func:`tricontour <matplotlib.pyplot.tricontour>` :kwarg complex_component: If plotting complex data, which component? (``'real'`` or ``'imag'``). Default is ``'real'``. :arg kwargs: same as for matplotlib :return: matplotlib :class:`ContourSet <matplotlib.contour.ContourSet>` object """ return _plot_2d_field("tricontour", function, *args, complex_component=complex_component, **kwargs)
[docs] @PETSc.Log.EventDecorator() def tripcolor(function, *args, complex_component="real", **kwargs): r"""Create a pseudo-color plot of a 2D Firedrake :class:`~.Function` If the input function is a vector field, the magnitude will be plotted. :arg function: the function to plot :arg args: same as for matplotlib :func:`tripcolor <matplotlib.pyplot.tripcolor>` :kwarg complex_component: If plotting complex data, which component? (``'real'`` or ``'imag'``). Default is ``'real'``. :arg kwargs: same as for matplotlib :return: matplotlib :class:`PolyCollection <matplotlib.collections.PolyCollection>` object """ element = function.ufl_element() dg0 = (element.family() == "Discontinuous Lagrange") and (element.degree() == 0) kwargs["shading"] = kwargs.get("shading", "flat" if dg0 else "gouraud") return _plot_2d_field("tripcolor", function, *args, complex_component=complex_component, **kwargs)
def _trisurf_3d(axes, function, *args, complex_component="real", vmin=None, vmax=None, norm=None, **kwargs): num_sample_points = kwargs.pop("num_sample_points", 10) function_plotter = FunctionPlotter(function.function_space().mesh(), num_sample_points) coordinates, triangles = function_plotter.coordinates, function_plotter.triangles vertices = coordinates[triangles] collection = Poly3DCollection(vertices, *args, **kwargs) values = toreal(function_plotter(function), complex_component) avg_vals = values[triangles].mean(axis=1) collection.set_array(avg_vals) if (vmin is not None) or (vmax is not None): collection.set_clim(vmin, vmax) if norm is not None: collection.set_norm(norm) axes.add_collection(collection) _autoscale_view(axes, coordinates) return collection
[docs] @PETSc.Log.EventDecorator() def trisurf(function, *args, complex_component="real", **kwargs): r"""Create a 3D surface plot of a 2D Firedrake :class:`~.Function` If the input function is a vector field, the magnitude will be plotted. :arg function: the Firedrake :class:`~.Function` to plot :arg args: same as for matplotlib :meth:`plot_trisurf <mpl_toolkits.mplot3d.axes3d.Axes3D.plot_trisurf>` :kwarg complex_component: If plotting complex data, which component? (``'real'`` or ``'imag'``). Default is ``'real'``. :arg kwargs: same as for matplotlib :return: matplotlib :class:`Poly3DCollection <mpl_toolkits.mplot3d.art3d.Poly3DCollection>` object """ axes = kwargs.pop("axes", None) if axes is None: figure = plt.figure() axes = figure.add_subplot(111, projection='3d') _kwargs = {"antialiased": False, "edgecolor": "none", "cmap": plt.rcParams["image.cmap"]} _kwargs.update(kwargs) Q = function.function_space() mesh = Q.mesh() if mesh.geometric_dimension() == 3: return _trisurf_3d(axes, function, *args, complex_component=complex_component, **_kwargs) _kwargs.update({"shade": False}) if len(function.ufl_shape) == 1: element = function.ufl_element().sub_elements[0] Q = FunctionSpace(mesh, element) function = assemble(Interpolate(sqrt(inner(function, function)), Q)) num_sample_points = kwargs.pop("num_sample_points", 10) function_plotter = FunctionPlotter(mesh, num_sample_points) triangulation = function_plotter.triangulation values = toreal(function_plotter(function), complex_component) return axes.plot_trisurf(triangulation, values, *args, **_kwargs)
[docs] @PETSc.Log.EventDecorator() def quiver(function, *, complex_component="real", **kwargs): r"""Make a quiver plot of a 2D vector Firedrake :class:`~.Function` :arg function: the vector field to plot :kwarg complex_component: If plotting complex data, which component? (``'real'`` or ``'imag'``). Default is ``'real'``. :arg kwargs: same as for matplotlib :func:`quiver <matplotlib.pyplot.quiver>` :return: matplotlib :class:`Quiver <matplotlib.quiver.Quiver>` object """ if function.ufl_shape != (2,): raise ValueError("Quiver plots only defined for 2D vector fields!") axes = kwargs.pop("axes", None) if axes is None: figure = plt.figure() axes = figure.add_subplot(111) coords = toreal(extract_unique_domain(function).coordinates.dat.data_ro, "real") V = extract_unique_domain(function).coordinates.function_space() function_interp = assemble(Interpolate(function, V)) vals = toreal(function_interp.dat.data_ro, complex_component) C = np.linalg.norm(vals, axis=1) return axes.quiver(*(coords.T), *(vals.T), C, **kwargs)
def _step_to_boundary(mesh, x, u, dt, loc_tolerance): bracket = (0., dt) while bracket[1] - bracket[0] > loc_tolerance * dt: ds = (bracket[1] + bracket[0]) / 2 if mesh.locate_cell(x + ds * u, tolerance=loc_tolerance) is None: bracket = (bracket[0], ds) else: bracket = (ds, bracket[1]) return bracket[0] @PETSc.Log.EventDecorator() def streamline(function, point, direction=+1, tolerance=3e-3, loc_tolerance=1e-10, complex_component="real"): r"""Generate a streamline of a vector field starting from a point :arg function: the Firedrake :class:`~.Function` to plot :arg point: the starting point of the streamline :arg direction: either +1 or -1 to integrate forward or backward :arg tolerance: dimensionless tolerance for the RK12 adaptive integration :arg loc_tolerance: tolerance for point location :kwarg complex_component: If plotting complex data, which component? (``'real'`` or ``'imag'``). Default is ``'real'``. :returns: a generator of the position, velocity, and timestep ``(x, v, dt)`` """ mesh = extract_unique_domain(function) cell_sizes = mesh.cell_sizes x = np.array(point) v1 = toreal(direction * function.at(x, tolerance=loc_tolerance), complex_component) r = toreal(cell_sizes.at(x, tolerance=loc_tolerance), "real") dt = 0.5 * r / np.sqrt(np.sum(v1**2)) while True: try: v2 = toreal(direction * function.at(x + dt * v1, tolerance=loc_tolerance), complex_component) except PointNotInDomainError: ds = _step_to_boundary(mesh, x, v1, dt, loc_tolerance) y = x + ds * v1 v1 = toreal(direction * function.at(y, tolerance=loc_tolerance), complex_component) yield y, v1, ds break dx1 = dt * v1 dx2 = dt * (v1 + v2) / 2 error = np.sqrt(np.sum((dx2 - dx1)**2)) / r if error <= tolerance: y = x + dx2 try: vy = toreal(direction * function.at(y, tolerance=loc_tolerance), complex_component) r = toreal(cell_sizes.at(y, tolerance=loc_tolerance), "real") except PointNotInDomainError: v = (v1 + v2) / 2 ds = _step_to_boundary(mesh, x, v, dt, loc_tolerance) y = x + ds * v v1 = toreal(direction * function.at(y, tolerance=loc_tolerance), complex_component) yield y, v1, ds break x[:] = y v1[:] = vy yield y, v1, dt # TODO: increase the step length if the error < fraction * tol max_step_length = 0.5 * r / np.sqrt(np.sum(v1**2)) if error == 0.: dt = max(1.5 * dt, max_step_length) else: proposed_dt = 0.85 * np.sqrt(tolerance / error) * dt dt = min(max_step_length, proposed_dt) class Reason(enum.IntEnum): LENGTH = enum.auto() TIME = enum.auto() BOUNDARY = enum.auto() class Streamplotter(object): def __init__(self, function, resolution, min_length, max_time, tolerance, loc_tolerance, *, complex_component="real"): r"""Generates a dense set of streamlines of a vector field This class is a utility for the :func:`~firedrake.plot.streamplot` function. """ self.function = function self.resolution = resolution self.min_length = min_length self.max_time = max_time self.tolerance = tolerance self.loc_tolerance = loc_tolerance self.complex_component = complex_component # Create a grid to track the distance to the nearest streamline mesh = extract_unique_domain(self.function) coords = toreal(mesh.coordinates.dat.data_ro, "real") self._xmin = coords.min(axis=0) xmax = coords.max(axis=0) self._r = self.resolution / np.sqrt(mesh.geometric_dimension()) shape = tuple(((xmax - self._xmin) / self._r).astype(int) + 2) self._grid = np.full(shape, 4 * self.resolution) self.streamlines = [] def _grid_index(self, x): r"""Return the indices in the grid where the given point lies""" return tuple(((x - self._xmin) / self._r).astype(int)) def _grid_point(self, index): r"""Return the position of the given grid index""" return self._xmin + self._r * np.array(index) def _approx_distance_to_streamlines(self, x): r"""Return the approximate distance to the set of streamlines that have been added, capped out to twice the resolution""" index = self._grid_index(x) g = self._grid[index[0]:index[0] + 2, index[1]:index[1] + 2] lx, ly = (x - self._grid_point(index)) / self._r return ((1 - ly) * ((1 - lx) * g[0, 0] + lx * g[1, 0]) + ly * ((1 - lx) * g[0, 1] + lx * g[1, 1])) def _compute_chunk(self, start_point, direction): r"""Compute a short segment of a streamline starting at a given point""" s = [start_point] L = 0. T = 0. reason = Reason.BOUNDARY for x, v, dt in streamline(self.function, start_point, direction, self.tolerance, self.loc_tolerance, complex_component=self.complex_component): delta = x - s[-1] s.append(x) T += dt L += np.sqrt(np.sum(delta**2)) if L >= self.min_length: reason = Reason.LENGTH break if T >= self.max_time: reason = Reason.TIME break return np.array(s), reason def _enter_distance_to_chunk(self, chunk): shape = self._grid.shape # TODO: Make this distance to segments, not just distance to points -- # could be overestimating the distance in the case of very long segments for x in chunk: ix, iy = self._grid_index(x) for i in range(max(ix - 2, 0), min(ix + 4, shape[0])): for j in range(max(iy - 2, 0), min(iy + 4, shape[1])): y = self._grid_point((i, j)) dist = min(np.sqrt(np.sum((x - y)**2)), 2 * self.resolution) self._grid[i, j] = min(dist, self._grid[i, j]) def _index_of_first_bad_point(self, chunk): r"""Return the index of the first point in the chunk that is close to another streamline""" for k, x in enumerate(chunk): if self._approx_distance_to_streamlines(x) < self.resolution: return k return None def _add_streamline_direction(self, chunk, index, reason, direction): chunks = [] while (index is None) and (reason == Reason.LENGTH): next_point = chunk[-1, :] next_chunk, next_reason = self._compute_chunk(next_point, direction) # Cut off the first point of the next chunk -- it's identical to # the last point of the previous one next_chunk = next_chunk[1:, :] next_index = self._index_of_first_bad_point(next_chunk) # Add the previous chunk self._enter_distance_to_chunk(chunk[:index, :]) chunks.append(chunk[:index, :]) chunk, reason, index = next_chunk, next_reason, next_index if index != 0: self._enter_distance_to_chunk(chunk[:index]) chunks.append(chunk[:index]) return np.concatenate(chunks, axis=0) def add_streamline(self, point): # If the point isn't inside the domain, bail out outside = extract_unique_domain(self.function).locate_cell(point) is None too_close = self._approx_distance_to_streamlines(point) < self.resolution if outside or too_close: return # Compute the first segments of the forward and backward chunks from # the current point fchunk, freason = self._compute_chunk(point, direction=+1) findex = self._index_of_first_bad_point(fchunk) bchunk, breason = self._compute_chunk(point, direction=-1) bindex = self._index_of_first_bad_point(bchunk) # If the initial segments aren't long enough, bail out flength = np.sum(np.sqrt(np.sum(np.diff(fchunk[:findex], axis=0)**2, axis=1))) blength = np.sum(np.sqrt(np.sum(np.diff(bchunk[:bindex], axis=0)**2, axis=1))) if flength + blength < self.min_length: return forward = self._add_streamline_direction(fchunk, findex, freason, +1) backward = self._add_streamline_direction(bchunk, bindex, breason, -1) streamline = np.vstack((backward[::-1], forward[1:])) self.streamlines.append(streamline)
[docs] @PETSc.Log.EventDecorator() def streamplot(function, resolution=None, min_length=None, max_time=None, start_width=0.5, end_width=1.5, tolerance=3e-3, loc_tolerance=1e-10, seed=None, complex_component="real", **kwargs): r"""Create a streamline plot of a vector field Similar to matplotlib :func:`streamplot <matplotlib.pyplot.streamplot>` :arg function: the Firedrake :class:`~.Function` to plot :arg resolution: minimum spacing between streamlines (defaults to domain size / 20) :arg min_length: minimum length of a streamline (defaults to 4x resolution) :arg max_time: maximum time to integrate a streamline :arg start_width: line width at beginning of streamline :arg end_width: line width at end of streamline, to convey direction :arg tolerance: dimensionless tolerance for adaptive ODE integration :arg loc_tolerance: point location tolerance for :meth:`~firedrake.function.Function.at` :kwarg complex_component: If plotting complex data, which component? (``'real'`` or ``'imag'``). Default is ``'real'``. :kwarg kwargs: same as for matplotlib :class:`~matplotlib.collections.LineCollection` """ if function.ufl_shape != (2,): raise ValueError("Streamplot only defined for 2D vector fields!") axes = kwargs.pop("axes", None) if axes is None: figure = plt.figure() axes = figure.add_subplot(111) mesh = extract_unique_domain(function) if resolution is None: coords = toreal(mesh.coordinates.dat.data_ro, "real") resolution = (coords.max(axis=0) - coords.min(axis=0)).max() / 20 if min_length is None: min_length = 4 * resolution if max_time is None: area = assemble(Constant(1) * dx(mesh)) average_speed = np.sqrt(assemble(inner(function, function) * dx) / area) max_time = 50 * min_length / average_speed streamplotter = Streamplotter(function, resolution, min_length, max_time, tolerance, loc_tolerance, complex_component=complex_component) # TODO: better way of seeding start points shape = streamplotter._grid.shape xmin = streamplotter._grid_point((0, 0)) xmax = streamplotter._grid_point((shape[0] - 2, shape[1] - 2)) X, Y = np.meshgrid(np.linspace(xmin[0], xmax[0], shape[0] - 2), np.linspace(xmin[1], xmax[1], shape[1] - 2)) start_points = np.vstack((X.ravel(), Y.ravel())).T # Randomly shuffle the start points generator = randomgen.Generator(randomgen.MT19937(seed)) for x in generator.permutation(np.array(start_points)): streamplotter.add_streamline(x) # Colors are determined by the speed, thicknesses by arc length speeds = [] widths = [] for streamline in streamplotter.streamlines: velocity = toreal(np.array(function.at(streamline, tolerance=loc_tolerance)), complex_component) speed = np.sqrt(np.sum(velocity**2, axis=1)) speeds.extend(speed[:-1]) delta = np.sqrt(np.sum(np.diff(streamline, axis=0)**2, axis=1)) arc_length = np.cumsum(delta) length = arc_length[-1] s = arc_length / length linewidth = (1 - s) * start_width + s * end_width widths.extend(linewidth) points = [] for streamline in streamplotter.streamlines: pts = streamline.reshape(-1, 1, 2) points.extend(np.hstack((pts[:-1], pts[1:]))) speeds = np.array(speeds) widths = np.array(widths) points = np.asarray(points) vmin = kwargs.pop("vmin", speeds.min()) vmax = kwargs.pop("vmax", speeds.max()) norm = kwargs.pop("norm", matplotlib.colors.Normalize(vmin=vmin, vmax=vmax)) cmap = plt.get_cmap(kwargs.pop("cmap", None)) collection = LineCollection(points, cmap=cmap, norm=norm, linewidth=widths) collection.set_array(speeds) axes.add_collection(collection) _autoscale_view(axes, extract_unique_domain(function).coordinates.dat.data_ro) return collection
class _FiredrakeFunctionPath(matplotlib.collections.PathCollection): # A distinct class to distinguish MPL PathCollection from the same object # used for plotting a Firedrake function (mainly for legend handling) pass class _HandlerFiredrakeFunctionPath(matplotlib.legend_handler.HandlerLine2D): # Legend handler for _FiredrakeFunctionPath def create_artists( self, legend, orig_handle, xdescent, ydescent, width, height, fontsize, trans ): xdata, xdata_marker = self.get_xdata( legend, xdescent, ydescent, width, height, fontsize ) ydata = np.full_like(xdata, (height - ydescent) / 2) l = Line2D(xdata, ydata) self.update_prop(l, orig_handle, legend) l.set_transform(trans) return [l] def _default_update_prop(self, legend_handle, orig_handle): # We need to override the default update property method as # PathCollection and Line2D are incompatible super(type(legend_handle), legend_handle).update_from(orig_handle) legend_handle._linestyle = orig_handle._linestyles[0][1] or '-' legend_handle._linewidth = orig_handle._linewidths[0] legend_handle._color = orig_handle._original_edgecolor matplotlib.legend.Legend.update_default_handler_map( {_FiredrakeFunctionPath: _HandlerFiredrakeFunctionPath()} )
[docs] @PETSc.Log.EventDecorator() def plot(function, *args, num_sample_points=10, complex_component="real", **kwargs): r"""Plot a 1D Firedrake :class:`~.Function` :arg function: The :class:`~.Function` to plot :arg args: same as for matplotlib :func:`plot <matplotlib.pyplot.plot>` :arg num_sample_points: number of sample points for high-degree functions :kwarg complex_component: If plotting complex data, which component? (``'real'`` or ``'imag'``). Default is ``'real'``. :arg kwargs: same as for matplotlib :class:`PathPatch <matplotlib.patches.PathPatch>` :return: list of matplotlib :class:`Line2D <matplotlib.lines.Line2D>` """ axes = kwargs.pop("axes", None) if axes is None: figure = plt.figure() axes = figure.add_subplot(111) label_list = kwargs.pop('label', []) if isinstance(label_list, str): label_list = [label_list] result = [] for ii, line in enumerate([function, *args]): if isinstance(line, MeshGeometry): raise TypeError("Expected Function, not Mesh; see firedrake.triplot") if extract_unique_domain(line).geometric_dimension() > 1: raise ValueError("Expected 1D Function; for plotting higher-dimensional fields, " "see tricontourf, tripcolor, quiver, trisurf") if line.ufl_shape != (): raise NotImplementedError("Plotting vector-valued 1D functions is not supported") try: label = label_list[ii] except IndexError: label = line.name() if line.ufl_element().degree() < 4: result.append(_bezier_plot(line, axes, complex_component=complex_component, label=label, **kwargs)) else: degree = line.ufl_element().degree() sample_points = max(num_sample_points, 2 * degree) function_plotter = FunctionPlotter(line.function_space().mesh(), sample_points) x_vals = function_plotter(line.function_space().mesh().coordinates) y_vals = function_plotter(line) points = np.array([x_vals, y_vals]) num_cells = line.function_space().mesh().num_cells() result.append(_interp_bezier(points, num_cells, axes, label=label, **kwargs)) _autoscale_view(axes, None) return result
def _bezier_calculate_points(function): """Calculate points values for a function used for bezier plotting :arg function: 1D Function with 1 < deg < 4 """ Q = function.function_space() deg = Q.ufl_element().degree() M = np.empty([deg + 1, deg + 1], dtype=float) # TODO: Revise this when FInAT gets dual evaluation basis = Q.finat_element.fiat_equivalent.dual_basis() for i in range(deg + 1): coeff = factorial(deg) / (factorial(i) * factorial(deg - i)) for j in range(deg + 1): x = list(basis[j].get_point_dict().keys())[0][0] M[i, j] = coeff * (x ** i) * (1 - x) ** (deg - i) M_inv = np.linalg.inv(M) cell_node_list = Q.cell_node_list return np.dot(function.dat.data_ro[cell_node_list], M_inv) def _bezier_plot(function, axes, complex_component="real", **kwargs): """Plot a 1D function on a function space with order no more than 4 using Bezier curves within each cell :arg function: 1D :class:`~.Function` to plot :arg axes: :class:`Axes <matplotlib.axes.Axes>` for plotting :kwarg complex_component: If plotting complex data, which component? (``'real'`` or ``'imag'``). Default is ``'real'``. :arg kwargs: additional key work arguments to plot :return: matplotlib :class:`PathPatch <matplotlib.patches.PathPatch>` """ deg = function.function_space().ufl_element().degree() mesh = function.function_space().mesh() if deg == 0: V = FunctionSpace(mesh, "DG", 1) interp = assemble(Interpolate(function, V)) return _bezier_plot(interp, axes, complex_component=complex_component, **kwargs) y_vals = _bezier_calculate_points(function) x = SpatialCoordinate(mesh) coords = Function(FunctionSpace(mesh, 'DG', deg)) coords.interpolate(x[0]) x_vals = _bezier_calculate_points(coords) vals = np.dstack((toreal(x_vals, "real"), toreal(y_vals, complex_component))) codes = {1: [Path.MOVETO, Path.LINETO], 2: [Path.MOVETO, Path.CURVE3, Path.CURVE3], 3: [Path.MOVETO, Path.CURVE4, Path.CURVE4, Path.CURVE4]} vertices = vals.reshape(-1, 2) path = Path(vertices, np.tile(codes[deg], function.function_space().cell_node_list.shape[0])) # We never want to color the interior arc of a line kwargs["facecolor"] = "none" # _get_patches_for_fill is used for patches, but we really DO want _get_lines # becasue we are pretending this _is_ a line kwargs["edgecolor"] = kwargs.pop( "edgecolor", axes._get_lines.get_next_color() ) kwargs["linewidth"] = kwargs.pop( "linewidth", plt.rcParams['lines.linewidth'] ) patch = _FiredrakeFunctionPath([path], **kwargs) axes.add_collection(patch) return patch def _interp_bezier(pts, num_cells, axes, complex_component="real", **kwargs): """Interpolate points of a 1D function into piece-wise Bezier curves :arg pts: Points of the 1D function evaluated by _calculate_one_dim_points :arg num_cells: Number of cells containing the points :arg axes: Axes to be plotted on :kwarg complex_component: If plotting complex data, which component? (``'real'`` or ``'imag'``). Default is ``'real'``. :arg kwargs: Addition key word argument for plotting """ pts = pts.T.reshape(num_cells, -1, 2) vertices = np.array([]).reshape(-1, 2) rows = np.arange(4) cols = (np.arange((pts.shape[1] - 1) // 3) * 3).reshape(-1, 1) idx = rows + cols # For transforming 1D points to Bezier curve M = np.array([[1., 0., 0., 0.], [-5/6, 3., -3/2, 1/3], [1/3, -3/2, 3., -5/6], [0., 0., 0., 1.]]) for i in range(num_cells): xs = np.dot(M, pts[i, idx]) vertices = np.append(toreal(vertices, "real"), toreal(xs.transpose([1, 0, 2]).reshape(-1, 2), complex_component)) vertices = vertices.reshape(-1, 2) codes = np.tile([Path.MOVETO, Path.CURVE4, Path.CURVE4, Path.CURVE4], vertices.shape[0] // 4) path = Path(vertices, codes) # We never want to color the interior arc of a line kwargs["facecolor"] = "none" # _get_patches_for_fill is used for patches, but we really DO want _get_lines # becasue we are pretending this _is_ a line kwargs["edgecolor"] = kwargs.pop( "edgecolor", axes._get_lines.get_next_color() ) kwargs["linewidth"] = kwargs.pop( "linewidth", plt.rcParams['lines.linewidth'] ) patch = _FiredrakeFunctionPath([path], **kwargs) axes.add_collection(patch) return patch
[docs] class FunctionPlotter: def __init__(self, mesh, num_sample_points): # num_sample_points must be of the form 3k + 1 for cubic Bezier plotting if num_sample_points % 3 != 1: num_sample_points = (num_sample_points // 3) * 3 + 1 if mesh.topological_dimension() == 1: self._setup_1d(mesh, num_sample_points) else: self._setup_nd(mesh, num_sample_points) def _setup_1d(self, mesh, num_sample_points): self._reference_points = np.linspace(0.0, 1.0, num_sample_points).reshape(-1, 1) def _setup_nd(self, mesh, num_sample_points): cell_name = mesh.ufl_cell().cellname() if cell_name == "triangle": x = np.array([0, 0, 1]) y = np.array([0, 1, 0]) elif cell_name in ["quadrilateral", "interval * interval"]: x = np.array([0, 0, 1, 1]) y = np.array([0, 1, 0, 1]) else: raise ValueError(f"Unsupported cell type {cell_name}") # First, create the *reference points* -- a triangulation and points in # a single reference cell of the mesh, which will be coarser or denser # depending on how many sample points were specified. base_tri = matplotlib.tri.Triangulation(x, y) refiner = matplotlib.tri.UniformTriRefiner(base_tri) sub_triangles = int(math.log(num_sample_points, 4)) tri = refiner.refine_triangulation(False, sub_triangles) triangles = tri.get_masked_triangles() self._reference_points = np.column_stack((tri.x, tri.y)) # Now create a matching triangulation of the whole domain. num_vertices = self._reference_points.shape[0] num_cells = mesh.coordinates.function_space().cell_node_list.shape[0] add_idx = np.arange(num_cells).reshape(-1, 1, 1) * num_vertices all_triangles = (triangles + add_idx).reshape(-1, 3) coordinate_values = self(mesh.coordinates) X = coordinate_values.reshape(-1, mesh.geometric_dimension()) coords = toreal(X, "real") if mesh.geometric_dimension() == 2: x, y = coords[:, 0], coords[:, 1] self.triangulation = matplotlib.tri.Triangulation(x, y, triangles=all_triangles) elif mesh.geometric_dimension() == 3: self.coordinates = coords self.triangles = all_triangles
[docs] def __call__(self, function): # TODO: Make this more efficient on repeated calls -- for example reuse `elem` # if the function space is the same as the last one Q = function.function_space() dimension = Q.mesh().topological_dimension() keys = {1: (0,), 2: (0, 0)} fiat_element = Q.finat_element.fiat_equivalent elem = fiat_element.tabulate(0, self._reference_points)[keys[dimension]] cell_node_list = Q.cell_node_list data = function.dat.data_ro_with_halos[cell_node_list] if function.ufl_shape == (): vec_length = 1 else: vec_length = function.ufl_shape[0] if vec_length == 1: data = np.reshape(data, data.shape + (1,)) return np.einsum("ijk, jl->ilk", data, elem).reshape(-1)