import loopy as lp
from firedrake.utils import IntType, as_cstr
from ufl import TensorProductCell
from finat.ufl import MixedElement
from ufl.corealg.map_dag import map_expr_dags
from ufl.algorithms import extract_arguments, extract_coefficients
from ufl.domain import extract_unique_domain
import gem
import tsfc
import tsfc.kernel_interface.firedrake_loopy as firedrake_interface
from tsfc.loopy import generate as generate_loopy
from tsfc.parameters import default_parameters
from firedrake import utils
from firedrake.petsc import PETSc
[docs]
@PETSc.Log.EventDecorator()
def compile_element(expression, coordinates, parameters=None):
"""Generates C code for point evaluations.
:arg expression: UFL expression
:arg coordinates: coordinate field
:arg parameters: form compiler parameters
:returns: C code as string
"""
if parameters is None:
parameters = default_parameters()
else:
_ = default_parameters()
_.update(parameters)
parameters = _
# No arguments, please!
if extract_arguments(expression):
return ValueError("Cannot interpolate UFL expression with Arguments!")
# Apply UFL preprocessing
expression = tsfc.ufl_utils.preprocess_expression(expression, complex_mode=utils.complex_mode)
# Collect required coefficients
coefficient, = extract_coefficients(expression)
# Point evaluation of mixed coefficients not supported here
if type(coefficient.ufl_element()) == MixedElement:
raise NotImplementedError("Cannot point evaluate mixed elements yet!")
# Replace coordinates (if any)
domain = extract_unique_domain(expression)
assert extract_unique_domain(coordinates) == domain
# Initialise kernel builder
builder = firedrake_interface.KernelBuilderBase(utils.ScalarType)
builder.domain_coordinate[domain] = coordinates
builder._coefficient(coordinates, "x")
x_arg = builder.generate_arg_from_expression(builder.coefficient_map[coordinates])
builder._coefficient(coefficient, "f")
f_arg = builder.generate_arg_from_expression(builder.coefficient_map[coefficient])
# TODO: restore this for expression evaluation!
# expression = ufl_utils.split_coefficients(expression, builder.coefficient_split)
# Translate to GEM
cell = domain.ufl_cell()
dim = cell.topological_dimension()
point = gem.Variable('X', (dim,))
point_arg = lp.GlobalArg("X", dtype=utils.ScalarType, shape=(dim,))
config = dict(interface=builder,
ufl_cell=extract_unique_domain(coordinates).ufl_cell(),
integral_type="cell",
point_indices=(),
point_expr=point,
scalar_type=utils.ScalarType)
# TODO: restore this for expression evaluation!
# config["cellvolume"] = cellvolume_generator(extract_unique_domain(coordinates), coordinates, config)
context = tsfc.fem.GemPointContext(**config)
# Abs-simplification
expression = tsfc.ufl_utils.simplify_abs(expression, utils.complex_mode)
# Translate UFL -> GEM
translator = tsfc.fem.Translator(context)
result, = map_expr_dags(translator, [expression])
tensor_indices = ()
if expression.ufl_shape:
tensor_indices = tuple(gem.Index() for s in expression.ufl_shape)
return_variable = gem.Indexed(gem.Variable('R', expression.ufl_shape), tensor_indices)
result_arg = lp.GlobalArg("R", dtype=utils.ScalarType, shape=expression.ufl_shape)
result = gem.Indexed(result, tensor_indices)
else:
return_variable = gem.Indexed(gem.Variable('R', (1,)), (0,))
result_arg = lp.GlobalArg("R", dtype=utils.ScalarType, shape=(1,))
# Unroll
max_extent = parameters["unroll_indexsum"]
if max_extent:
def predicate(index):
return index.extent <= max_extent
result, = gem.optimise.unroll_indexsum([result], predicate=predicate)
# Translate GEM -> loopy
result, = gem.impero_utils.preprocess_gem([result])
impero_c = gem.impero_utils.compile_gem([(return_variable, result)], tensor_indices)
loopy_args = [result_arg, point_arg, x_arg, f_arg]
loopy_kernel, _ = generate_loopy(
impero_c, loopy_args, utils.ScalarType,
kernel_name="evaluate_kernel", index_names={})
kernel_code = lp.generate_code_v2(loopy_kernel).device_code()
# Fill the code template
extruded = isinstance(cell, TensorProductCell)
code = {
"geometric_dimension": cell.geometric_dimension(),
"layers_arg": ", int const *__restrict__ layers" if extruded else "",
"layers": ", layers" if extruded else "",
"extruded_define": "1" if extruded else "0",
"IntType": as_cstr(IntType),
"scalar_type": utils.ScalarType_c,
}
# if maps are the same, only need to pass one of them
if coordinates.cell_node_map() == coefficient.cell_node_map():
code["wrapper_map_args"] = "%(IntType)s const *__restrict__ coords_map" % code
code["map_args"] = "f->coords_map"
else:
code["wrapper_map_args"] = "%(IntType)s const *__restrict__ coords_map, %(IntType)s const *__restrict__ f_map" % code
code["map_args"] = "f->coords_map, f->f_map"
evaluate_template_c = """
static inline void wrap_evaluate(%(scalar_type)s* const result, %(scalar_type)s* const X, %(IntType)s const start, %(IntType)s const end%(layers_arg)s,
%(scalar_type)s const *__restrict__ coords, %(scalar_type)s const *__restrict__ f, %(wrapper_map_args)s);
int evaluate(struct Function *f, double *x, %(scalar_type)s *result)
{
/* The type definitions and arguments used here are defined as statics in pointquery_utils.py */
double found_ref_cell_dist_l1 = DBL_MAX;
struct ReferenceCoords temp_reference_coords, found_reference_coords;
int cells_ignore[1] = {-1};
%(IntType)s cell = locate_cell(f, x, %(geometric_dimension)d, &to_reference_coords, &to_reference_coords_xtr, &temp_reference_coords, &found_reference_coords, &found_ref_cell_dist_l1, 1, cells_ignore);
if (cell == -1) {
return -1;
}
if (!result) {
return 0;
}
#if %(extruded_define)s
int layers[2] = {0, 0};
int nlayers = f->n_layers;
layers[1] = cell %% nlayers + 2;
cell = cell / nlayers;
#endif
wrap_evaluate(result, found_reference_coords.X, cell, cell+1%(layers)s, f->coords, f->f, %(map_args)s);
return 0;
}
"""
return (evaluate_template_c % code) + kernel_code