from finat.element_factory import create_base_element
import numpy as np
from pyop2.utils import as_tuple
try:
import vtkmodules.vtkCommonDataModel
del vtkmodules.vtkCommonDataModel
except ModuleNotFoundError as e:
raise ModuleNotFoundError(
"Error importing vtkmodules. Firedrake does not install VTK by default, "
"you may need to install VTK by running\n\t"
"pip install vtk"
) from e
from vtkmodules.vtkCommonDataModel import (
vtkLagrangeTriangle, vtkLagrangeTetra,
vtkLagrangeQuadrilateral, vtkLagrangeHexahedron, vtkLagrangeWedge
)
__all__ = (
"vtk_lagrange_tet_reorder",
"vtk_lagrange_hex_reorder",
"vtk_lagrange_interval_reorder",
"vtk_lagrange_triangle_reorder",
"vtk_lagrange_quad_reorder",
"vtk_lagrange_wedge_reorder",
)
def firedrake_local_to_cart(element):
r"""Gets the list of nodes for an element (provided they exist.)
:arg element: a ufl element.
:returns: a list of arrays of floats where each array is a node.
"""
finat_element = create_base_element(element)
_, point_set = finat_element.dual_basis
return point_set.points
def invert(list1, list2):
r"""Given two maps (lists) from [0..N] to nodes, finds a permutations between them.
:arg list1: a list of nodes.
:arg list2: a second list of nodes.
:returns: a list of integers, l, such that list1[x] = list2[l[x]]
"""
if len(list1) != len(list2):
raise ValueError("Dimension of Paraview basis and Element basis unequal.")
def find_same(val, lst, tol=0.00000001):
for (idx, x) in enumerate(lst):
if np.linalg.norm(val - x) < tol:
return idx
raise ValueError("Unable to establish permutation between Paraview basis and given element's basis.")
perm = [find_same(x, list2) for x in list1]
if len(set(perm)) != len(perm):
raise ValueError("Unable to establish permutation between Paraview basis and given element's basis.")
return perm
# The following functions wrap around functions provided by vtk (pip install vtk).
# The vtk functions do one of two things:
#
# 1. They convert (i,j,k) indices, locations on a rect or hex, to a dof index.
#
# 2. They convert an index into a dofs into an index into some sort of indexing
# of the nodes typically barycentric indecies
#
# The follow functions call the two types of VTK functions.
# They use them to produce maps from dof indices to node locations.
# These functions will later be used to figure out reorderings of nodes.
def vtk_interval_local_coord(i, order):
r"""
See vtkLagrangeCurve::PointIndexFromIJK.
"""
if i == 0:
return 0.0
elif i == order:
return 1.0
else:
return i / order
def bary_to_cart(bar):
N = len(bar) - 1
mat = np.vstack([np.zeros(N), np.eye(N)])
return np.dot(bar, mat)
def tet_barycentric_index(tet, index, order):
"""
Wrapper for vtkLagrangeTetra::BarycentricIndex.
"""
bindex = [-1, -1, -1, -1]
tet.BarycentricIndex(index, bindex, order)
return bary_to_cart(np.array(bindex) / order)
def vtk_tet_local_to_cart(order):
r"""Produces a list of nodes for VTK's lagrange tet basis.
:arg order: the order of the tet
:return a list of arrays of floats
"""
count = int((order + 1) * (order + 2) * (order + 3) // 6)
tet = vtkLagrangeTetra()
carts = [tet_barycentric_index(tet, i, order) for i in range(count)]
return carts
def vtk_hex_local_to_cart(orders):
r"""Produces a list of nodes for VTK's lagrange hex basis.
:arg order: the three orders of the hex basis.
:return a list of arrays of floats.
"""
sizes = tuple([o + 1 for o in orders])
size = np.prod(sizes)
loc_to_cart = np.empty(size, dtype="object")
hexa = vtkLagrangeHexahedron()
for loc in np.ndindex(sizes):
idx = hexa.PointIndexFromIJK(loc[0], loc[1], loc[2], orders)
cart = np.array([c / o for (c, o) in zip(loc, orders)])
loc_to_cart[idx] = cart
return loc_to_cart
def vtk_triangle_index_cart(tri, index, order):
"""
Wrapper for vtkLagrangeTriangle::BarycentricIndex
"""
bindex = [-1, -1, -1]
tri.BarycentricIndex(index, bindex, order)
return bary_to_cart(bindex)
def vtk_triangle_local_to_cart(order):
count = (order + 1) * (order + 2) // 2
tri = vtkLagrangeTriangle()
return [vtk_triangle_index_cart(tri, idx, order) / order
for idx in range(count)]
def vtk_quad_local_to_cart(orders):
r"""Produces a list of nodes for VTK's lagrange quad basis.
:arg order: the order of the quad basis.
:return a list of arrays of floats.
"""
sizes = tuple([o + 1 for o in orders])
size = np.prod(sizes)
loc_to_cart = np.empty(size, dtype="object")
quad = vtkLagrangeQuadrilateral()
for loc in np.ndindex(sizes):
idx = quad.PointIndexFromIJK(loc[0], loc[1], orders)
cart = np.array([c / o for (c, o) in zip(loc, orders)])
loc_to_cart[idx] = cart
return loc_to_cart
def vtk_wedge_local_to_cart(ordersp):
r"""Produces a list of nodes for VTK's lagrange wedge basis.
:arg order: the orders of the wedge (triangle, interval)
:return a list of arrays of floats
"""
orders = [ordersp[0], ordersp[0], ordersp[1]]
sizes = tuple([o + 1 for o in orders])
triSize = (orders[0] + 1) * (orders[0] + 2) // 2
totalSize = triSize * (orders[2] + 1)
loc_to_cart = np.empty(totalSize, dtype="object")
wedge = vtkLagrangeWedge()
for loc in np.ndindex(sizes):
if loc[0] + loc[1] > orders[0]:
continue
idx = wedge.PointIndexFromIJK(loc[0], loc[1], loc[2], orders)
cart = np.array([c / o for (c, o) in zip(loc, orders)])
loc_to_cart[idx] = cart
return loc_to_cart
"""
The following functions take a given ufl_element, (indicated by the function name), and
produce a permutation of the element's basis that turns it into the basis that VTK/Paraview
uses.
"""
[docs]
def vtk_lagrange_interval_reorder(ufl_element):
degree = ufl_element.degree()
vtk_local = [vtk_interval_local_coord(x, degree) for x in range(degree + 1)]
firedrake_local = firedrake_local_to_cart(ufl_element)
return invert(vtk_local, firedrake_local)
[docs]
def vtk_lagrange_triangle_reorder(ufl_element):
degree = ufl_element.degree()
vtk_local = vtk_triangle_local_to_cart(degree)
firedrake_local = firedrake_local_to_cart(ufl_element)
return invert(vtk_local, firedrake_local)
[docs]
def vtk_lagrange_quad_reorder(ufl_element):
degree = as_tuple(ufl_element.degree())[0] # should be uniform
vtk_local = vtk_quad_local_to_cart((degree, degree))
firedrake_local = firedrake_local_to_cart(ufl_element)
return invert(vtk_local, firedrake_local)
[docs]
def vtk_lagrange_tet_reorder(ufl_element):
degree = ufl_element.degree()
vtk_local = vtk_tet_local_to_cart(degree)
firedrake_local = firedrake_local_to_cart(ufl_element)
return invert(vtk_local, firedrake_local)
[docs]
def vtk_lagrange_wedge_reorder(ufl_element):
degree = ufl_element.degree()
vtk_local = vtk_wedge_local_to_cart(degree)
firedrake_local = firedrake_local_to_cart(ufl_element)
return invert(vtk_local, firedrake_local)
[docs]
def vtk_lagrange_hex_reorder(ufl_element):
# tensor product elements have a degree tuple whereas
# normal hexes use an integer
degrees = as_tuple(ufl_element.degree())
degree = max(degrees)
if any(d != degree for d in degrees):
raise ValueError(
"Degrees on hex tensor products must be uniform because VTK "
"can't understand otherwise."
)
vtk_local = vtk_hex_local_to_cart((degree, degree, degree))
firedrake_local = firedrake_local_to_cart(ufl_element)
return invert(vtk_local, firedrake_local)