Source code for firedrake.mg.kernels

import numpy
import string
from fractions import Fraction
from pyop2 import op2
from firedrake.utils import IntType, as_cstr, complex_mode, ScalarType
from firedrake.functionspacedata import entity_dofs_key
from firedrake.functionspaceimpl import FiredrakeDualSpace
import firedrake
from firedrake.mg import utils

from ufl.algorithms.analysis import extract_arguments, extract_coefficients
from ufl.algorithms import estimate_total_polynomial_degree
from ufl.corealg.map_dag import map_expr_dags
from ufl.domain import extract_unique_domain

import loopy as lp
import pymbolic as pym

import gem
import gem.impero_utils as impero_utils

import ufl
import finat.ufl
import tsfc

import tsfc.kernel_interface.firedrake_loopy as firedrake_interface

from tsfc.loopy import generate as generate_loopy
from tsfc import fem, ufl_utils, spectral
from tsfc.driver import TSFCIntegralDataInfo
from tsfc.kernel_interface.common import lower_integral_type
from tsfc.parameters import default_parameters
from finat.element_factory import create_element
from finat.quadrature import make_quadrature
from firedrake.pointquery_utils import dX_norm_square, X_isub_dX, init_X, inside_check, is_affine, celldist_l1_c_expr
from firedrake.pointquery_utils import to_reference_coords_newton_step as to_reference_coords_newton_step_body


[docs] def to_reference_coordinates(ufl_coordinate_element, parameters=None): if parameters is None: parameters = tsfc.default_parameters() else: _ = tsfc.default_parameters() _.update(parameters) parameters = _ # Create FInAT element element = finat.element_factory.create_element(ufl_coordinate_element) gdim, = ufl_coordinate_element.reference_value_shape cell = ufl_coordinate_element.cell code = { "geometric_dimension": gdim, "topological_dimension": cell.topological_dimension(), "to_reference_coords_newton_step": to_reference_coords_newton_step_body(ufl_coordinate_element, parameters, x0_dtype=ScalarType, dX_dtype="double"), "init_X": init_X(element.cell, parameters), "max_iteration_count": 1 if is_affine(ufl_coordinate_element) else 16, "convergence_epsilon": 1e-12, "dX_norm_square": dX_norm_square(cell.topological_dimension()), "X_isub_dX": X_isub_dX(cell.topological_dimension()), "IntType": as_cstr(IntType), } evaluate_template_c = """#include <math.h> #include <stdio.h> #include <petsc.h> %(to_reference_coords_newton_step)s static inline void to_reference_coords_kernel(PetscScalar *X, const PetscScalar *x0, const PetscScalar *C) { const int space_dim = %(geometric_dimension)d; /* * Mapping coordinates from physical to reference space */ %(init_X)s int converged = 0; for (int it = 0; !converged && it < %(max_iteration_count)d; it++) { double dX[%(topological_dimension)d] = { 0.0 }; to_reference_coords_newton_step(C, x0, X, dX); if (%(dX_norm_square)s < %(convergence_epsilon)g * %(convergence_epsilon)g) { converged = 1; } %(X_isub_dX)s } }""" return evaluate_template_c % code
[docs] def compile_element(expression, dual_space=None, parameters=None, name="evaluate"): """Generate code for point evaluations. :arg expression: A UFL expression (may contain up to one coefficient, or one argument) :arg dual_space: if the expression has an argument, should we also distribute residual data? :returns: The generated code (:class:`loopy.TranslationUnit`) """ if parameters is None: parameters = default_parameters() else: _ = default_parameters() _.update(parameters) parameters = _ expression = tsfc.ufl_utils.preprocess_expression(expression, complex_mode=complex_mode) # # Collect required coefficients try: arg, = extract_coefficients(expression) argument_multiindices = () coefficient = True if expression.ufl_shape: tensor_indices = tuple(gem.Index() for s in expression.ufl_shape) else: tensor_indices = () except ValueError: arg, = extract_arguments(expression) finat_elem = create_element(arg.ufl_element()) argument_multiindices = (finat_elem.get_indices(), ) argument_multiindex, = argument_multiindices value_shape = finat_elem.value_shape if value_shape: tensor_indices = argument_multiindex[-len(value_shape):] else: tensor_indices = () coefficient = False # Replace coordinates (if any) builder = firedrake_interface.KernelBuilderBase(scalar_type=ScalarType) domain = extract_unique_domain(expression) # Translate to GEM cell = domain.ufl_cell() dim = cell.topological_dimension() point = gem.Variable('X', (dim,)) point_arg = lp.GlobalArg("X", dtype=ScalarType, shape=(dim,)) config = dict(interface=builder, ufl_cell=cell, integral_type="cell", point_indices=(), point_expr=point, argument_multiindices=argument_multiindices, scalar_type=parameters["scalar_type"]) context = tsfc.fem.GemPointContext(**config) # Abs-simplification expression = tsfc.ufl_utils.simplify_abs(expression, complex_mode) # Translate UFL -> GEM if coefficient: assert dual_space is None builder._coefficient(arg, "f") f_arg = [builder.generate_arg_from_expression(builder.coefficient_map[arg])] else: f_arg = [] translator = tsfc.fem.Translator(context) result, = map_expr_dags(translator, [expression]) b_arg = [] if coefficient: if expression.ufl_shape: return_variable = gem.Indexed(gem.Variable('R', expression.ufl_shape), tensor_indices) result_arg = lp.GlobalArg("R", dtype=ScalarType, shape=expression.ufl_shape) result = gem.Indexed(result, tensor_indices) else: return_variable = gem.Indexed(gem.Variable('R', (1,)), (0,)) result_arg = lp.GlobalArg("R", dtype=ScalarType, shape=(1,)) else: return_variable = gem.Indexed(gem.Variable('R', finat_elem.index_shape), argument_multiindex) result = gem.Indexed(result, tensor_indices) if dual_space: value_shape = dual_space.value_shape if value_shape: var = gem.Indexed(gem.Variable("b", value_shape), tensor_indices) b_arg = [lp.GlobalArg("b", dtype=ScalarType, shape=value_shape)] else: var = gem.Indexed(gem.Variable("b", (1, )), (0, )) b_arg = [lp.GlobalArg("b", dtype=ScalarType, shape=(1,))] result = gem.Product(result, var) result_arg = lp.GlobalArg("R", dtype=ScalarType, shape=finat_elem.index_shape) # Unroll max_extent = parameters["unroll_indexsum"] if max_extent: def predicate(index): return index.extent <= max_extent result, = gem.optimise.unroll_indexsum([result], predicate=predicate) # Translate GEM -> loopy result, = gem.impero_utils.preprocess_gem([result]) impero_c = gem.impero_utils.compile_gem([(return_variable, result)], tensor_indices) loopy_args = [result_arg] + b_arg + f_arg + [point_arg] kernel_code, _ = generate_loopy( impero_c, loopy_args, ScalarType, kernel_name="pyop2_kernel_"+name, index_names={}) return lp.generate_code_v2(kernel_code).device_code()
[docs] def prolong_kernel(expression): meshc = extract_unique_domain(expression) hierarchy, level = utils.get_level(extract_unique_domain(expression)) levelf = level + Fraction(1, hierarchy.refinements_per_level) cache = hierarchy._shared_data_cache["transfer_kernels"] coordinates = extract_unique_domain(expression).coordinates if meshc.cell_set._extruded: idx = levelf * hierarchy.refinements_per_level assert idx == int(idx) assert hierarchy._meshes[int(idx)].cell_set._extruded V = expression.function_space() key = (("prolong",) + V.value_shape + entity_dofs_key(V.finat_element.complex.get_topology()) + entity_dofs_key(V.finat_element.entity_dofs()) + entity_dofs_key(coordinates.function_space().finat_element.entity_dofs())) try: return cache[key] except KeyError: mesh = extract_unique_domain(coordinates) eval_code = compile_element(expression) to_reference_kernel = to_reference_coordinates(coordinates.ufl_element()) element = create_element(expression.ufl_element()) coords_element = create_element(coordinates.ufl_element()) my_kernel = """#include <petsc.h> %(to_reference)s %(evaluate)s __attribute__((noinline)) /* Clang bug */ static void pyop2_kernel_prolong(PetscScalar *R, PetscScalar *f, const PetscScalar *X, const PetscScalar *Xc) { PetscScalar Xref[%(tdim)d]; int cell = -1; int bestcell = -1; double bestdist = 1e10; for (int i = 0; i < %(ncandidate)d; i++) { const PetscScalar *Xci = Xc + i*%(Xc_cell_inc)d; double celldist = 2*bestdist; to_reference_coords_kernel(Xref, X, Xci); if (%(inside_cell)s) { cell = i; break; } celldist = %(celldist_l1_c_expr)s; if (celldist < bestdist) { bestdist = celldist; bestcell = i; } } if (cell == -1) { /* We didn't find a cell that contained this point exactly. Did we find one that was close enough? */ if (bestdist < 10) { cell = bestcell; } else { fprintf(stderr, "Could not identify cell in transfer operator. Point: "); for (int coord = 0; coord < %(spacedim)s; coord++) { fprintf(stderr, "%%.14e ", X[coord]); } fprintf(stderr, "\\n"); fprintf(stderr, "Number of candidates: %%d. Best distance located: %%14e", %(ncandidate)d, bestdist); abort(); } } const PetscScalar *coarsei = f + cell*%(coarse_cell_inc)d; for ( int i = 0; i < %(Rdim)d; i++ ) { R[i] = 0; } pyop2_kernel_evaluate(R, coarsei, Xref); } """ % {"to_reference": str(to_reference_kernel), "evaluate": eval_code, "spacedim": element.cell.get_spatial_dimension(), "ncandidate": hierarchy.fine_to_coarse_cells[levelf].shape[1], "Rdim": V.value_size, "inside_cell": inside_check(element.cell, eps=1e-8, X="Xref"), "celldist_l1_c_expr": celldist_l1_c_expr(element.cell, X="Xref"), "Xc_cell_inc": coords_element.space_dimension(), "coarse_cell_inc": element.space_dimension(), "tdim": mesh.topological_dimension()} return cache.setdefault(key, op2.Kernel(my_kernel, name="pyop2_kernel_prolong"))
[docs] def restrict_kernel(Vf, Vc): hierarchy, level = utils.get_level(Vc.mesh()) levelf = level + Fraction(1, hierarchy.refinements_per_level) cache = hierarchy._shared_data_cache["transfer_kernels"] coordinates = Vc.mesh().coordinates if Vf.extruded: assert Vc.extruded key = (("restrict",) + Vf.value_shape + entity_dofs_key(Vf.finat_element.complex.get_topology()) + entity_dofs_key(Vc.finat_element.complex.get_topology()) + entity_dofs_key(Vf.finat_element.entity_dofs()) + entity_dofs_key(Vc.finat_element.entity_dofs()) + entity_dofs_key(coordinates.function_space().finat_element.entity_dofs())) try: return cache[key] except KeyError: assert isinstance(Vc, FiredrakeDualSpace) and isinstance(Vf, FiredrakeDualSpace) mesh = extract_unique_domain(coordinates) evaluate_code = compile_element(firedrake.TestFunction(Vc.dual()), Vf.dual()) to_reference_kernel = to_reference_coordinates(coordinates.ufl_element()) coords_element = create_element(coordinates.ufl_element()) element = create_element(Vc.ufl_element()) my_kernel = """#include <petsc.h> %(to_reference)s %(evaluate)s __attribute__((noinline)) /* Clang bug */ static void pyop2_kernel_restrict(PetscScalar *R, PetscScalar *b, const PetscScalar *X, const PetscScalar *Xc) { PetscScalar Xref[%(tdim)d]; int cell = -1; int bestcell = -1; double bestdist = 1e10; for (int i = 0; i < %(ncandidate)d; i++) { const PetscScalar *Xci = Xc + i*%(Xc_cell_inc)d; double celldist = 2*bestdist; to_reference_coords_kernel(Xref, X, Xci); if (%(inside_cell)s) { cell = i; break; } celldist = %(celldist_l1_c_expr)s; /* fprintf(stderr, "cell %%d celldist: %%.14e\\n", i, celldist); fprintf(stderr, "Xref: %%.14e %%.14e %%.14e\\n", Xref[0], Xref[1], Xref[2]); */ if (celldist < bestdist) { bestdist = celldist; bestcell = i; } } if (cell == -1) { /* We didn't find a cell that contained this point exactly. Did we find one that was close enough? */ if (bestdist < 10) { cell = bestcell; } else { fprintf(stderr, "Could not identify cell in transfer operator. Point: "); for (int coord = 0; coord < %(spacedim)s; coord++) { fprintf(stderr, "%%.14e ", X[coord]); } fprintf(stderr, "\\n"); fprintf(stderr, "Number of candidates: %%d. Best distance located: %%14e", %(ncandidate)d, bestdist); abort(); } } { const PetscScalar *Ri = R + cell*%(coarse_cell_inc)d; pyop2_kernel_evaluate(Ri, b, Xref); } } """ % {"to_reference": str(to_reference_kernel), "evaluate": evaluate_code, "ncandidate": hierarchy.fine_to_coarse_cells[levelf].shape[1], "inside_cell": inside_check(element.cell, eps=1e-8, X="Xref"), "celldist_l1_c_expr": celldist_l1_c_expr(element.cell, X="Xref"), "Xc_cell_inc": coords_element.space_dimension(), "coarse_cell_inc": element.space_dimension(), "spacedim": element.cell.get_spatial_dimension(), "tdim": mesh.topological_dimension()} return cache.setdefault(key, op2.Kernel(my_kernel, name="pyop2_kernel_restrict"))
[docs] def inject_kernel(Vf, Vc): hierarchy, level = utils.get_level(Vc.mesh()) cache = hierarchy._shared_data_cache["transfer_kernels"] coordinates = Vf.mesh().coordinates if Vf.extruded: assert Vc.extruded level_ratio = (Vf.mesh().layers - 1) // (Vc.mesh().layers - 1) else: level_ratio = 1 key = (("inject", level_ratio) + Vf.value_shape + entity_dofs_key(Vc.finat_element.complex.get_topology()) + entity_dofs_key(Vf.finat_element.complex.get_topology()) + entity_dofs_key(Vc.finat_element.entity_dofs()) + entity_dofs_key(Vf.finat_element.entity_dofs()) + entity_dofs_key(Vc.mesh().coordinates.function_space().finat_element.entity_dofs()) + entity_dofs_key(coordinates.function_space().finat_element.entity_dofs())) try: return cache[key] except KeyError: ncandidate = hierarchy.coarse_to_fine_cells[level].shape[1] * level_ratio if Vc.finat_element.entity_dofs() == Vc.finat_element.entity_closure_dofs(): return cache.setdefault(key, (dg_injection_kernel(Vf, Vc, ncandidate), True)) coordinates = Vf.mesh().coordinates evaluate_code = compile_element(ufl.Coefficient(Vf)) to_reference_kernel = to_reference_coordinates(coordinates.ufl_element()) coords_element = create_element(coordinates.ufl_element()) Vf_element = create_element(Vf.ufl_element()) kernel = """ %(to_reference)s %(evaluate)s __attribute__((noinline)) /* Clang bug */ static void pyop2_kernel_inject(PetscScalar *R, const PetscScalar *X, const PetscScalar *f, const PetscScalar *Xf) { PetscScalar Xref[%(tdim)d]; int cell = -1; int bestcell = -1; double bestdist = 1e10; for (int i = 0; i < %(ncandidate)d; i++) { const PetscScalar *Xfi = Xf + i*%(Xf_cell_inc)d; double celldist = 2*bestdist; to_reference_coords_kernel(Xref, X, Xfi); if (%(inside_cell)s) { cell = i; break; } celldist = %(celldist_l1_c_expr)s; if (celldist < bestdist) { bestdist = celldist; bestcell = i; } } if (cell == -1) { /* We didn't find a cell that contained this point exactly. Did we find one that was close enough? */ if (bestdist < 10) { cell = bestcell; } else { fprintf(stderr, "Could not identify cell in transfer operator. Point: "); for (int coord = 0; coord < %(spacedim)s; coord++) { fprintf(stderr, "%%.14e ", X[coord]); } fprintf(stderr, "\\n"); fprintf(stderr, "Number of candidates: %%d. Best distance located: %%14e", %(ncandidate)d, bestdist); abort(); } } const PetscScalar *fi = f + cell*%(f_cell_inc)d; for ( int i = 0; i < %(Rdim)d; i++ ) { R[i] = 0; } pyop2_kernel_evaluate(R, fi, Xref); } """ % { "to_reference": str(to_reference_kernel), "evaluate": evaluate_code, "inside_cell": inside_check(Vc.finat_element.cell, eps=1e-8, X="Xref"), "spacedim": Vc.finat_element.cell.get_spatial_dimension(), "celldist_l1_c_expr": celldist_l1_c_expr(Vc.finat_element.cell, X="Xref"), "tdim": Vc.mesh().topological_dimension(), "ncandidate": ncandidate, "Rdim": numpy.prod(Vf.value_shape), "Xf_cell_inc": coords_element.space_dimension(), "f_cell_inc": Vf_element.space_dimension() } return cache.setdefault(key, (op2.Kernel(kernel, name="pyop2_kernel_inject"), False))
[docs] class MacroKernelBuilder(firedrake_interface.KernelBuilderBase): """Kernel builder for integration on a macro-cell.""" oriented = False def __init__(self, scalar_type, num_entities): """:arg num_entities: the number of micro-entities to integrate over.""" super().__init__(scalar_type) self.indices = (gem.Index("entity", extent=num_entities), ) self.shape = tuple(i.extent for i in self.indices) self.unsummed_coefficient_indices = frozenset(self.indices)
[docs] def set_coefficients(self, coefficients): self.coefficients = [] self.coefficient_split = {} self.kernel_args = [] for i, coefficient in enumerate(coefficients): if type(coefficient.ufl_element()) == finat.ufl.MixedElement: raise NotImplementedError("Sorry, not for mixed.") self.coefficients.append(coefficient) self.kernel_args.append(self._coefficient(coefficient, "macro_w_%d" % (i, )))
[docs] def set_coordinates(self, domain): """Prepare the coordinate field. :arg domain: :class:`ufl.AbstractDomain` """ # Create a fake coordinate coefficient for a domain. f = ufl.Coefficient(ufl.FunctionSpace(domain, domain.ufl_coordinate_element())) self.domain_coordinate[domain] = f self._coefficient(f, "macro_coords")
def _coefficient(self, coefficient, name): element = create_element(coefficient.ufl_element()) shape = self.shape + element.index_shape size = numpy.prod(shape, dtype=int) funarg = lp.GlobalArg(name, dtype=ScalarType, shape=(size,)) expression = gem.reshape(gem.Variable(name, (size, )), shape) expression = gem.partial_indexed(expression, self.indices) self.coefficient_map[coefficient] = expression return funarg
[docs] def dg_injection_kernel(Vf, Vc, ncell): from firedrake import Tensor, AssembledVector, TestFunction, TrialFunction from firedrake.slate.slac import compile_expression if complex_mode: raise NotImplementedError("In complex mode we are waiting for Slate") macro_builder = MacroKernelBuilder(ScalarType, ncell) f = ufl.Coefficient(Vf) macro_builder.set_coefficients([f]) macro_builder.set_coordinates(Vf.mesh()) Vfe = create_element(Vf.ufl_element()) ref_complex = Vfe.complex variant = Vf.ufl_element().variant() or "default" if "alfeld" in variant.lower(): from FIAT import macro ref_complex = macro.PowellSabinSplit(Vfe.cell) macro_quadrature_rule = make_quadrature(ref_complex, estimate_total_polynomial_degree(ufl.inner(f, f))) index_cache = {} parameters = default_parameters() integration_dim, entity_ids = lower_integral_type(Vfe.cell, "cell") macro_cfg = dict(interface=macro_builder, ufl_cell=Vf.ufl_cell(), integral_type="cell", integration_dim=integration_dim, entity_ids=entity_ids, index_cache=index_cache, quadrature_rule=macro_quadrature_rule, scalar_type=parameters["scalar_type"]) macro_context = fem.PointSetContext(**macro_cfg) fexpr, = fem.compile_ufl(f, macro_context) X = ufl.SpatialCoordinate(Vf.mesh()) C_a, = fem.compile_ufl(X, macro_context) detJ = ufl_utils.preprocess_expression(abs(ufl.JacobianDeterminant(extract_unique_domain(f))), complex_mode=complex_mode) macro_detJ, = fem.compile_ufl(detJ, macro_context) Vce = create_element(Vc.ufl_element()) info = TSFCIntegralDataInfo(domain=Vc.mesh(), integral_type="cell", subdomain_id=("otherwise",), domain_number=0, arguments=(ufl.TestFunction(Vc), ), coefficients=(), coefficient_numbers=()) coarse_builder = firedrake_interface.KernelBuilder(info, parameters["scalar_type"]) coarse_builder.set_coordinates(Vc.mesh()) argument_multiindices = coarse_builder.argument_multiindices argument_multiindex, = argument_multiindices return_variable, = coarse_builder.return_variables integration_dim, entity_ids = lower_integral_type(Vce.cell, "cell") # Midpoint quadrature for jacobian on coarse cell. quadrature_rule = make_quadrature(Vce.cell, 0) coarse_cfg = dict(interface=coarse_builder, ufl_cell=Vc.ufl_cell(), integral_type="cell", integration_dim=integration_dim, entity_ids=entity_ids, index_cache=index_cache, quadrature_rule=quadrature_rule, scalar_type=parameters["scalar_type"]) X = ufl.SpatialCoordinate(Vc.mesh()) K = ufl_utils.preprocess_expression(ufl.JacobianInverse(Vc.mesh()), complex_mode=complex_mode) coarse_context = fem.PointSetContext(**coarse_cfg) C_0, = fem.compile_ufl(X, coarse_context) K, = fem.compile_ufl(K, coarse_context) i = gem.Index() j = gem.Index() C_0 = gem.Indexed(C_0, (j, )) C_0 = gem.index_sum(C_0, quadrature_rule.point_set.indices) C_a = gem.Indexed(C_a, (j, )) X_a = gem.Sum(C_0, gem.Product(gem.Literal(-1), C_a)) K_ij = gem.Indexed(K, (i, j)) K_ij = gem.index_sum(K_ij, quadrature_rule.point_set.indices) X_a = gem.index_sum(gem.Product(K_ij, X_a), (j, )) C_0, = quadrature_rule.point_set.points C_0 = gem.Indexed(gem.Literal(C_0), (i, )) # fine quad points in coarse reference space. X_a = gem.Sum(C_0, gem.Product(gem.Literal(-1), X_a)) X_a = gem.ComponentTensor(X_a, (i, )) # Coarse basis function evaluated at fine quadrature points phi_c = fem.fiat_to_ufl(Vce.point_evaluation(0, X_a, (Vce.cell.get_dimension(), 0)), 0) tensor_indices = tuple(gem.Index(extent=d) for d in f.ufl_shape) phi_c = gem.Indexed(phi_c, argument_multiindex + tensor_indices) fexpr = gem.Indexed(fexpr, tensor_indices) quadrature_weight = macro_quadrature_rule.weight_expression expr = gem.Product(gem.IndexSum(gem.Product(phi_c, fexpr), tensor_indices), gem.Product(macro_detJ, quadrature_weight)) quadrature_indices = macro_builder.indices + macro_quadrature_rule.point_set.indices reps = spectral.Integrals([expr], quadrature_indices, argument_multiindices, parameters) assignments = spectral.flatten([(return_variable, reps)], index_cache) return_variables, expressions = zip(*assignments) expressions = impero_utils.preprocess_gem(expressions, **spectral.finalise_options) assignments = list(zip(return_variables, expressions)) impero_c = impero_utils.compile_gem(assignments, quadrature_indices + argument_multiindex, remove_zeros=True) index_names = [] def name_index(index, name): index_names.append((index, name)) if index in index_cache: for multiindex, suffix in zip(index_cache[index], string.ascii_lowercase): name_multiindex(multiindex, name + suffix) def name_multiindex(multiindex, name): if len(multiindex) == 1: name_index(multiindex[0], name) else: for i, index in enumerate(multiindex): name_index(index, name + str(i)) name_multiindex(quadrature_indices, 'ip') for multiindex, name in zip(argument_multiindices, ['j', 'k']): name_multiindex(multiindex, name) index_names.extend(zip(macro_builder.indices, ["entity"])) # now construct the outermost kernel domains = [] instructions = [] kernel_data = [] subkernels = [] depends_on = frozenset() local_tensor = coarse_builder.generate_arg_from_expression(coarse_builder.return_variables) # 1. Zero the local tensor iname = "i0" domains.append(f"{{ [{iname}]: 0 <= {iname} < {Vce.space_dimension()} }}") instructions.append( lp.Assignment( pym.subscript(pym.var(local_tensor.name), (pym.var(iname),)), 0, within_inames=frozenset({iname}), id="zero", depends_on=depends_on)) kernel_data.append( lp.TemporaryVariable(local_tensor.name, shape=local_tensor.shape, dtype=local_tensor.dtype)) depends_on |= {"zero"} # 2. Fill the local tensor macro_coordinates_arg = macro_builder.generate_arg_from_expression( macro_builder.coefficient_map[macro_builder.domain_coordinate[Vf.mesh()]]) coarse_coordinates_arg = coarse_builder.generate_arg_from_expression( coarse_builder.coefficient_map[coarse_builder.domain_coordinate[Vc.mesh()]]) eval_args = [ lp.GlobalArg( local_tensor.name, dtype=local_tensor.dtype, shape=local_tensor.shape, is_input=True, is_output=True), *macro_builder.kernel_args, macro_coordinates_arg, coarse_coordinates_arg, ] eval_kernel, _ = generate_loopy( impero_c, eval_args, ScalarType, kernel_name="pyop2_kernel_evaluate", index_names=index_names) subkernels.append(eval_kernel) fill_insn, extra_domains = _generate_call_insn( "pyop2_kernel_evaluate", eval_args, iname_prefix="fill", id="fill", depends_on=depends_on, within_inames_is_final=True) instructions.append(fill_insn) domains.extend(extra_domains) depends_on |= {fill_insn.id} # 3. Now we have the kernel that computes <f, phi_c>dx_c. # So now we need to hit it with the inverse mass matrix on dx_c retarg = lp.GlobalArg( "R", dtype=ScalarType, shape=local_tensor.shape, is_output=True) kernel_data = [ retarg, *macro_builder.kernel_args, macro_coordinates_arg, coarse_coordinates_arg, *kernel_data] u = TrialFunction(Vc) v = TestFunction(Vc) expr = Tensor(ufl.inner(u, v)*ufl.dx).inv * AssembledVector(ufl.Coefficient(Vc)) Ainv, = compile_expression(expr) Ainv = Ainv.kinfo.kernel subkernels.append(Ainv.code) eval_args = [retarg, coarse_coordinates_arg, local_tensor] inv_insn, extra_domains = _generate_call_insn( Ainv.name, eval_args, iname_prefix="inv", id="inv", depends_on=depends_on, within_inames_is_final=True) instructions.append(inv_insn) domains.extend(extra_domains) depends_on |= {inv_insn.id} kernel_name = "pyop2_kernel_injection_dg" kernel = lp.make_kernel( domains, instructions, kernel_data, name=kernel_name, target=tsfc.parameters.target, lang_version=(2018, 2)) kernel = lp.merge([kernel, *subkernels]) return op2.Kernel( kernel, name=kernel_name, include_dirs=Ainv.include_dirs, headers=Ainv.headers, events=Ainv.events)
def _generate_call_insn(name, args, *, iname_prefix=None, **kwargs): """Create an appropriate loopy call instruction from its arguments. This function is useful because :class:`loopy.CallInstruction` are a faff to build since each argument needs to be wrapped in a :class:`loopy.symbolic.SubArrayRef` with an associated iname and domain. Parameters ---------- name : str The name of the kernel to be called. args : iterable of loopy.ArrayArg The arguments used to construct the callee kernel. These must have vector shape. iname_prefix : str, optional Prefix to the autogenerated inames, defaults to ``name``. kwargs All other keyword arguments are passed to the :class:`loopy.CallInstruction` constructor. Returns ------- insn : loopy.CallInstruction The generated call instruction. extra_domains Iterable of extra loop domains that must be added to the caller kernel. """ if not iname_prefix: iname_prefix = name domains = [] assignees = [] parameters = [] swept_iname_counter = 0 for arg in args: try: shape, = arg.shape except ValueError: raise NotImplementedError("Expecting vector-shaped arguments") swept_iname = f"{iname_prefix}_i{swept_iname_counter}" swept_iname_counter += 1 domains.append(f"{{ [{swept_iname}]: 0 <= {swept_iname} < {shape} }}") swept_index = (pym.var(swept_iname),) param = lp.symbolic.SubArrayRef( swept_index, pym.subscript(pym.var(arg.name), swept_index)) parameters.append(param) if arg.is_output: assignees.append(param) assignees = tuple(assignees) parameters = tuple(parameters) expression = pym.primitives.Call(pym.var(name), parameters) return lp.CallInstruction(assignees, expression, **kwargs), domains