Source code for firedrake.mesh

import numpy as np
import ctypes
import os
import sys
import ufl
import finat.ufl
import FIAT
import weakref
from collections import OrderedDict, defaultdict
from collections.abc import Sequence
from ufl.classes import ReferenceGrad
from ufl.domain import extract_unique_domain
import enum
import numbers
import abc
import rtree
from textwrap import dedent
from pathlib import Path

from pyop2 import op2
from pyop2.mpi import (
    MPI, COMM_WORLD, internal_comm, is_pyop2_comm, temp_internal_comm
)
from pyop2.utils import as_tuple

import firedrake.cython.dmcommon as dmcommon
import firedrake.cython.extrusion_numbering as extnum
import firedrake.extrusion_utils as eutils
import firedrake.cython.spatialindex as spatialindex
import firedrake.utils as utils
from firedrake.utils import as_cstr, IntType, RealType
from firedrake.logging import info_red
from firedrake.parameters import parameters
from firedrake.petsc import (
    PETSc, OptionsManager, get_external_packages, DEFAULT_PARTITIONER
)
from firedrake.adjoint_utils import MeshGeometryMixin
from pyadjoint import stop_annotating
import gem

try:
    import netgen
except ImportError:
    netgen = None
    ngsPETSc = None
# Only for docstring
import mpi4py  # noqa: F401
from tsfc.finatinterface import as_fiat_cell


__all__ = [
    'Mesh', 'ExtrudedMesh', 'VertexOnlyMesh', 'RelabeledMesh',
    'SubDomainData', 'unmarked', 'DistributedMeshOverlapType',
    'DEFAULT_MESH_NAME', 'MeshGeometry', 'MeshTopology',
    'AbstractMeshTopology', 'ExtrudedMeshTopology', 'VertexOnlyMeshTopology',
    'VertexOnlyMeshMissingPointsError',
    'Submesh'
]


_cells = {
    0: {0: "vertex"},
    1: {2: "interval"},
    2: {3: "triangle", 4: "quadrilateral"},
    3: {4: "tetrahedron", 6: "hexahedron"}
}


_supported_embedded_cell_types = [ufl.Cell('interval', 2),
                                  ufl.Cell('triangle', 3),
                                  ufl.Cell("quadrilateral", 3),
                                  ufl.TensorProductCell(ufl.Cell('interval'), ufl.Cell('interval'), geometric_dimension=3)]


unmarked = -1
"""A mesh marker that selects all entities that are not explicitly marked."""

DEFAULT_MESH_NAME = "_".join(["firedrake", "default"])
"""The default name of the mesh."""


def _generate_default_submesh_name(name):
    """Generate the default submesh name from the mesh name.

    Parameters
    ----------
    name : str
        Name of the parent mesh.

    Returns
    -------
    str
        Default submesh name.

    """
    return "_".join([name, "submesh"])


def _generate_default_mesh_coordinates_name(name):
    """Generate the default mesh coordinates name from the mesh name.

    :arg name: the mesh name.
    :returns: the default mesh coordinates name.
    """
    return "_".join([name, "coordinates"])


def _generate_default_mesh_reference_coordinates_name(name):
    """Generate the default mesh reference coordinates name from the mesh name.

    :arg name: the mesh name.
    :returns: the default mesh reference coordinates name.
    """
    return "_".join([name, "reference_coordinates"])


def _generate_default_mesh_topology_name(name):
    """Generate the default mesh topology name from the mesh name.

    :arg name: the mesh name.
    :returns: the default mesh topology name.
    """
    return "_".join([name, "topology"])


def _generate_default_mesh_topology_distribution_name(comm_size, dist_param):
    """Generate the default mesh topology permutation name.

    :arg comm_size: the size of comm.
    :arg dist_param: the distribution_parameter dict.
    :returns: the default mesh topology distribution name.
    """
    return "_".join(["firedrake", "default",
                     str(comm_size),
                     str(dist_param["partition"]).replace(' ', ''),
                     str(dist_param["partitioner_type"]),
                     "(" + dist_param["overlap_type"][0].name + "," + str(dist_param["overlap_type"][1]) + ")"])


def _generate_default_mesh_topology_permutation_name(reorder):
    """Generate the default mesh topology permutation name.

    :arg reorder: the flag indicating if the reordering happened or not.
    :returns: the default mesh topology permutation name.
    """
    return "_".join(["firedrake", "default", str(reorder)])


[docs] class DistributedMeshOverlapType(enum.Enum): """How should the mesh overlap be grown for distributed meshes? Possible options are: - :attr:`NONE`: Don't overlap distributed meshes, only useful for problems with no interior facet integrals. - :attr:`FACET`: Add ghost entities in the closure of the star of facets. - :attr:`VERTEX`: Add ghost entities in the closure of the star of vertices. Defaults to :attr:`FACET`. """ NONE = 1 FACET = 2 VERTEX = 3
class _Facets(object): """Wrapper class for facet interation information on a :func:`Mesh` .. warning:: The unique_markers argument **must** be the same on all processes.""" @PETSc.Log.EventDecorator() def __init__(self, mesh, facets, classes, kind, facet_cell, local_facet_number, unique_markers=None): self.mesh = mesh self.facets = facets classes = as_tuple(classes, int, 3) self.classes = classes self.kind = kind assert kind in ["interior", "exterior"] if kind == "interior": self._rank = 2 else: self._rank = 1 self.facet_cell = facet_cell if isinstance(self.set, op2.ExtrudedSet): dset = op2.DataSet(self.set.parent, self._rank) else: dset = op2.DataSet(self.set, self._rank) # Dat indicating which local facet of each adjacent cell corresponds # to the current facet. self.local_facet_dat = op2.Dat(dset, local_facet_number, np.uintc, "%s_%s_local_facet_number" % (self.mesh.name, self.kind)) self.unique_markers = [] if unique_markers is None else unique_markers self._subsets = {} @utils.cached_property def set(self): size = self.classes if isinstance(self.mesh, ExtrudedMeshTopology): label = "%s_facets" % self.kind layers = self.mesh.entity_layers(1, label) base = getattr(self.mesh._base_mesh, label).set return op2.ExtrudedSet(base, layers=layers) return op2.Set(size, "%sFacets" % self.kind.capitalize()[:3], comm=self.mesh.comm) @utils.cached_property def _null_subset(self): '''Empty subset for the case in which there are no facets with a given marker value. This is required because not all markers need be represented on all processors.''' return op2.Subset(self.set, []) @PETSc.Log.EventDecorator() def measure_set(self, integral_type, subdomain_id, all_integer_subdomain_ids=None): """Return an iteration set appropriate for the requested integral type. :arg integral_type: The type of the integral (should be a facet measure). :arg subdomain_id: The subdomain of the mesh to iterate over. Either an integer, an iterable of integers or the special subdomains ``"everywhere"`` or ``"otherwise"``. :arg all_integer_subdomain_ids: Information to interpret the ``"otherwise"`` subdomain. ``"otherwise"`` means all entities not explicitly enumerated by the integer subdomains provided here. For example, if all_integer_subdomain_ids is empty, then ``"otherwise" == "everywhere"``. If it contains ``(1, 2)``, then ``"otherwise"`` is all entities except those marked by subdomains 1 and 2. :returns: A :class:`pyop2.Subset` for iteration. """ if integral_type in ("exterior_facet_bottom", "exterior_facet_top", "interior_facet_horiz"): # these iterate over the base cell set return self.mesh.cell_subset(subdomain_id, all_integer_subdomain_ids) elif not (integral_type.startswith("exterior_") or integral_type.startswith("interior_")): raise ValueError("Don't know how to construct measure for '%s'" % integral_type) if subdomain_id == "everywhere": return self.set if subdomain_id == "otherwise": if all_integer_subdomain_ids is None: return self.set key = ("otherwise", ) + all_integer_subdomain_ids try: return self._subsets[key] except KeyError: unmarked_points = self._collect_unmarked_points(all_integer_subdomain_ids) _, indices, _ = np.intersect1d(self.facets, unmarked_points, return_indices=True) return self._subsets.setdefault(key, op2.Subset(self.set, indices)) else: return self.subset(subdomain_id) @PETSc.Log.EventDecorator() def subset(self, markers): """Return the subset corresponding to a given marker value. :param markers: integer marker id or an iterable of marker ids (or ``None``, for an empty subset). """ valid_markers = set([unmarked]).union(self.unique_markers) markers = as_tuple(markers, numbers.Integral) try: return self._subsets[markers] except KeyError: # check that the given markers are valid if len(set(markers).difference(valid_markers)) > 0: invalid = set(markers).difference(valid_markers) raise LookupError("{0} are not a valid markers (not in {1})".format(invalid, self.unique_markers)) # build a list of indices corresponding to the subsets selected by # markers marked_points_list = [] for i in markers: if i == unmarked: _markers = self.mesh.topology_dm.getLabelIdIS(dmcommon.FACE_SETS_LABEL).indices # Can exclude points labeled with i\in markers here, # as they will be included in the below anyway. marked_points_list.append(self._collect_unmarked_points([_i for _i in _markers if _i not in markers])) else: if self.mesh.topology_dm.getStratumSize(dmcommon.FACE_SETS_LABEL, i): marked_points_list.append(self.mesh.topology_dm.getStratumIS(dmcommon.FACE_SETS_LABEL, i).indices) if marked_points_list: _, indices, _ = np.intersect1d(self.facets, np.concatenate(marked_points_list), return_indices=True) return self._subsets.setdefault(markers, op2.Subset(self.set, indices)) else: return self._subsets.setdefault(markers, self._null_subset) def _collect_unmarked_points(self, markers): """Collect points that are not marked by markers.""" plex = self.mesh.topology_dm indices_list = [] for i in markers: if plex.getStratumSize(dmcommon.FACE_SETS_LABEL, i): indices_list.append(plex.getStratumIS(dmcommon.FACE_SETS_LABEL, i).indices) if indices_list: return np.setdiff1d(self.facets, np.concatenate(indices_list)) else: return self.facets @utils.cached_property def facet_cell_map(self): """Map from facets to cells.""" return op2.Map(self.set, self.mesh.cell_set, self._rank, self.facet_cell, "facet_to_cell_map") @utils.cached_property def local_facet_orientation_dat(self): """Dat for the local facet orientations.""" dtype = gem.uint_type # Make a map from cell to facet orientations. fiat_cell = as_fiat_cell(self.mesh.ufl_cell()) topo = fiat_cell.topology num_entities = [0] for d in range(len(topo)): num_entities.append(len(topo[d])) offsets = np.cumsum(num_entities) local_facet_start = offsets[-3] local_facet_end = offsets[-2] map_from_cell_to_facet_orientations = self.mesh.entity_orientations[:, local_facet_start:local_facet_end] # Make output data; # this is a map from an exterior/interior facet to the corresponding local facet orientation/orientations. # Halo data are required by design, but not actually used. # -- Reshape as (-1, self._rank) to uniformly handle exterior and interior facets. data = np.empty_like(self.local_facet_dat.data_ro_with_halos).reshape((-1, self._rank)) data.fill(np.iinfo(dtype).max) # Set local facet orientations on the block corresponding to the owned facets; i.e., data[:shape[0], :] below. local_facets = self.local_facet_dat.data_ro # do not need halos. # -- Reshape as (-1, self._rank) to uniformly handle exterior and interior facets. local_facets = local_facets.reshape((-1, self._rank)) shape = local_facets.shape map_from_owned_facet_to_cells = self.facet_cell[:shape[0], :] data[:shape[0], :] = np.take_along_axis( map_from_cell_to_facet_orientations[map_from_owned_facet_to_cells], local_facets.reshape(shape + (1, )), # reshape as required by take_along_axis. axis=2, ).reshape(shape) return op2.Dat( self.local_facet_dat.dataset, data, dtype, f"{self.mesh.name}_{self.kind}_local_facet_orientation" ) @PETSc.Log.EventDecorator() def _from_gmsh(filename, comm=None): """Read a Gmsh .msh file from `filename`. :kwarg comm: Optional communicator to build the mesh on (defaults to COMM_WORLD). """ comm = comm or COMM_WORLD gmsh_plex = PETSc.DMPlex().createFromFile(filename, comm=comm) return gmsh_plex @PETSc.Log.EventDecorator() def _from_exodus(filename, comm): """Read an Exodus .e or .exo file from `filename`. :arg comm: communicator to build the mesh on. """ plex = PETSc.DMPlex().createExodusFromFile(filename, comm=comm) return plex @PETSc.Log.EventDecorator() def _from_cgns(filename, comm): """Read a CGNS .cgns file from `filename`. :arg comm: communicator to build the mesh on. """ plex = PETSc.DMPlex().createCGNSFromFile(filename, comm=comm) return plex @PETSc.Log.EventDecorator() def _from_triangle(filename, dim, comm): """Read a set of triangle mesh files from `filename`. :arg dim: The embedding dimension. :arg comm: communicator to build the mesh on. """ basename, ext = os.path.splitext(filename) with temp_internal_comm(comm) as icomm: if icomm.rank == 0: try: facetfile = open(basename+".face") tdim = 3 except FileNotFoundError: try: facetfile = open(basename+".edge") tdim = 2 except FileNotFoundError: facetfile = None tdim = 1 if dim is None: dim = tdim icomm.bcast(tdim, root=0) with open(basename+".node") as nodefile: header = np.fromfile(nodefile, dtype=np.int32, count=2, sep=' ') nodecount = header[0] nodedim = header[1] assert nodedim == dim coordinates = np.loadtxt(nodefile, usecols=list(range(1, dim+1)), skiprows=1, dtype=np.double) assert nodecount == coordinates.shape[0] with open(basename+".ele") as elefile: header = np.fromfile(elefile, dtype=np.int32, count=2, sep=' ') elecount = header[0] eledim = header[1] eles = np.loadtxt(elefile, usecols=list(range(1, eledim+1)), dtype=np.int32, skiprows=1) assert elecount == eles.shape[0] cells = list(map(lambda c: c-1, eles)) else: tdim = icomm.bcast(None, root=0) cells = None coordinates = None plex = plex_from_cell_list(tdim, cells, coordinates, icomm) # Apply boundary IDs if icomm.rank == 0: facets = None try: header = np.fromfile(facetfile, dtype=np.int32, count=2, sep=' ') edgecount = header[0] facets = np.loadtxt(facetfile, usecols=list(range(1, tdim+2)), dtype=np.int32, skiprows=0) assert edgecount == facets.shape[0] finally: facetfile.close() if facets is not None: vStart, vEnd = plex.getDepthStratum(0) # vertices for facet in facets: bid = facet[-1] vertices = list(map(lambda v: v + vStart - 1, facet[:-1])) join = plex.getJoin(vertices) plex.setLabelValue(dmcommon.FACE_SETS_LABEL, join[0], bid) return plex def plex_from_cell_list(dim, cells, coords, comm, name=None): """ Create a DMPlex from a list of cells and coords. (Public interface to `_from_cell_list()`) :arg dim: The topological dimension of the mesh :arg cells: The vertices of each cell :arg coords: The coordinates of each vertex :arg comm: communicator to build the mesh on. Must be a PyOP2 internal communicator :kwarg name: name of the plex """ with temp_internal_comm(comm) as icomm: # These types are /correct/, DMPlexCreateFromCellList wants int # and double (not PetscInt, PetscReal). if comm.rank == 0: cells = np.asarray(cells, dtype=np.int32) coords = np.asarray(coords, dtype=np.double) comm.bcast(cells.shape, root=0) comm.bcast(coords.shape, root=0) # Provide the actual data on rank 0. plex = PETSc.DMPlex().createFromCellList(dim, cells, coords, comm=icomm) else: cell_shape = list(comm.bcast(None, root=0)) coord_shape = list(comm.bcast(None, root=0)) cell_shape[0] = 0 coord_shape[0] = 0 # Provide empty plex on other ranks # A subsequent call to plex.distribute() takes care of parallel partitioning plex = PETSc.DMPlex().createFromCellList(dim, np.zeros(cell_shape, dtype=np.int32), np.zeros(coord_shape, dtype=np.double), comm=icomm) if name is not None: plex.setName(name) return plex @PETSc.Log.EventDecorator() def _from_cell_list(dim, cells, coords, comm, name=None): """ Create a DMPlex from a list of cells and coords. This function remains for backward compatibility, but will be deprecated after 01/06/2023 :arg dim: The topological dimension of the mesh :arg cells: The vertices of each cell :arg coords: The coordinates of each vertex :arg comm: communicator to build the mesh on. Must be a PyOP2 internal communicator :kwarg name: name of the plex """ import warnings warnings.warn( "Private function `_from_cell_list` will be deprecated after 01/06/2023;" "use public fuction `plex_from_cell_list()` instead.", DeprecationWarning ) assert is_pyop2_comm(comm) # These types are /correct/, DMPlexCreateFromCellList wants int # and double (not PetscInt, PetscReal). if comm.rank == 0: cells = np.asarray(cells, dtype=np.int32) coords = np.asarray(coords, dtype=np.double) comm.bcast(cells.shape, root=0) comm.bcast(coords.shape, root=0) # Provide the actual data on rank 0. plex = PETSc.DMPlex().createFromCellList(dim, cells, coords, comm=comm) else: cell_shape = list(comm.bcast(None, root=0)) coord_shape = list(comm.bcast(None, root=0)) cell_shape[0] = 0 coord_shape[0] = 0 # Provide empty plex on other ranks # A subsequent call to plex.distribute() takes care of parallel partitioning plex = PETSc.DMPlex().createFromCellList(dim, np.zeros(cell_shape, dtype=np.int32), np.zeros(coord_shape, dtype=np.double), comm=comm) if name is not None: plex.setName(name) return plex
[docs] class AbstractMeshTopology(object, metaclass=abc.ABCMeta): """A representation of an abstract mesh topology without a concrete PETSc DM implementation""" def __init__(self, topology_dm, name, reorder, sfXB, perm_is, distribution_name, permutation_name, comm): """Initialise a mesh topology. Parameters ---------- topology_dm : PETSc.DMPlex or PETSc.DMSwarm `PETSc.DMPlex` or `PETSc.DMSwarm` representing the mesh topology. name : str Name of the mesh topology. reorder : bool Whether to reorder the mesh entities. sfXB : PETSc.PetscSF `PETSc.SF` that pushes forward the global point number slab ``[0, NX)`` to input (naive) plex (only significant when the mesh topology is loaded from file and only passed from inside `~.CheckpointFile`). perm_is : PETSc.IS `PETSc.IS` that is used as ``_dm_renumbering``; only makes sense if we know the exact parallel distribution of ``plex`` at the time of mesh topology construction like when we load mesh along with its distribution. If given, ``reorder`` param will be ignored. distribution_name : str Name of the parallel distribution; if `None`, automatically generated. permutation_name : str Name of the entity permutation (reordering); if `None`, automatically generated. comm : mpi4py.MPI.Comm Communicator. """ utils._init() dmcommon.validate_mesh(topology_dm) topology_dm.setFromOptions() self.topology_dm = topology_dm r"The PETSc DM representation of the mesh topology." self.sfBC = None r"The PETSc SF that pushes the input (naive) plex to current (good) plex." self.sfXB = sfXB r"The PETSc SF that pushes the global point number slab [0, NX) to input (naive) plex." # User comm self.user_comm = comm # Internal comm self._comm = internal_comm(self.user_comm, self) dmcommon.label_facets(self.topology_dm) self._distribute() self._grown_halos = False def callback(self): """Finish initialisation.""" del self._callback if self.comm.size > 1: self._add_overlap() if self.sfXB is not None: self.sfXC = sfXB.compose(self.sfBC) if self.sfBC else self.sfXB dmcommon.label_facets(self.topology_dm) dmcommon.complete_facet_labels(self.topology_dm) # TODO: Allow users to set distribution name if they want to save # conceptually the same mesh but with different distributions, # e.g., those generated by different partitioners. # This currently does not make sense since those mesh instances # of different distributions in general have different global # point numbers (so they must be saved under different mesh names # even though they are conceptually the same). # The name set here almost uniquely identifies a distribution, but # there is no gurantee that it really does or it continues to do so # there are lots of parameters that can change distributions. # Thus, when using CheckpointFile, it is recommended that the user set # distribution_name explicitly. # Mark OP2 entities and derive the resulting Plex renumbering with PETSc.Log.Event("Mesh: numbering"): self._mark_entity_classes() self._entity_classes = dmcommon.get_entity_classes(self.topology_dm).astype(int) if perm_is: self._dm_renumbering = perm_is else: self._dm_renumbering = self._renumber_entities(reorder) self._did_reordering = bool(reorder) # Derive a cell numbering from the Plex renumbering tdim = dmcommon.get_topological_dimension(self.topology_dm) entity_dofs = np.zeros(tdim+1, dtype=IntType) entity_dofs[-1] = 1 self._cell_numbering, _ = self.create_section(entity_dofs) if tdim == 0: self._vertex_numbering = self._cell_numbering else: entity_dofs[:] = 0 entity_dofs[0] = 1 self._vertex_numbering, _ = self.create_section(entity_dofs) entity_dofs[:] = 0 entity_dofs[-2] = 1 facet_numbering, _ = self.create_section(entity_dofs) self._facet_ordering = dmcommon.get_facet_ordering(self.topology_dm, facet_numbering) self._callback = callback self.name = name # Set/Generate names to be used when checkpointing. self._distribution_name = distribution_name or _generate_default_mesh_topology_distribution_name(self.topology_dm.comm.size, self._distribution_parameters) self._permutation_name = permutation_name or _generate_default_mesh_topology_permutation_name(reorder) # A cache of shared function space data on this mesh self._shared_data_cache = defaultdict(dict) # Cell subsets for integration over subregions self._subsets = {} # A set of weakrefs to meshes that are explicitly labelled as being # parallel-compatible for interpolation/projection/supermeshing # To set, do e.g. # target_mesh._parallel_compatible = {weakref.ref(source_mesh)} self._parallel_compatible = None # submesh self.submesh_parent = None layers = None """No layers on unstructured mesh""" variable_layers = False """No variable layers on unstructured mesh""" @abc.abstractmethod def _distribute(self): """Distribute the mesh toplogy.""" pass @abc.abstractmethod def _add_overlap(self): """Add overlap.""" pass @abc.abstractmethod def _mark_entity_classes(self): """Mark entities with pyop2 classes.""" pass @abc.abstractmethod def _renumber_entities(self, reorder): """Renumber entities.""" pass @property def comm(self): return self.user_comm
[docs] def mpi_comm(self): """The MPI communicator this mesh is built on (an mpi4py object).""" return self.comm
[docs] @PETSc.Log.EventDecorator("CreateMesh") def init(self): """Finish the initialisation of the mesh.""" if hasattr(self, '_callback'): self._callback(self)
@property def topology(self): """The underlying mesh topology object.""" return self @property def topological(self): """Alias of topology. This is to ensure consistent naming for some multigrid codes.""" return self @property def _topology_dm(self): """Alias of topology_dm""" from warnings import warn warn("_topology_dm is deprecated (use topology_dm instead)", DeprecationWarning, stacklevel=2) return self.topology_dm
[docs] def ufl_cell(self): """The UFL :class:`~ufl.classes.Cell` associated with the mesh. .. note:: By convention, the UFL cells which specifically represent a mesh topology have geometric dimension equal their topological dimension. This is true even for immersed manifold meshes. """ return self._ufl_cell
[docs] def ufl_mesh(self): """The UFL :class:`~ufl.classes.Mesh` associated with the mesh. .. note:: By convention, the UFL cells which specifically represent a mesh topology have geometric dimension equal their topological dimension. This convention will be reflected in this UFL mesh and is true even for immersed manifold meshes. """ return self._ufl_mesh
@property @abc.abstractmethod def cell_closure(self): """2D array of ordered cell closures Each row contains ordered cell entities for a cell, one row per cell. """ pass @property @abc.abstractmethod def entity_orientations(self): """2D array of entity orientations `entity_orientations` has the same shape as `cell_closure`. Each row of this array contains orientations of the entities in the closure of the associated cell. Here, for each cell in the mesh, orientation of an entity, say e, encodes how the the canonical representation of the entity defined by Cone(e) compares to that of the associated entity in the reference FInAT (FIAT) cell. (Note that `cell_closure` defines how each cell in the mesh is mapped to the FInAT (FIAT) reference cell and each entity of the FInAT (FIAT) reference cell has a canonical representation based on the entity ids of the lower dimensional entities.) Orientations of vertices are always 0. See ``FIAT.reference_element.Simplex`` and ``FIAT.reference_element.UFCQuadrilateral`` for example computations of orientations. """ pass @abc.abstractmethod def _facets(self, kind): pass @property @abc.abstractmethod def exterior_facets(self): pass @property @abc.abstractmethod def interior_facets(self): pass @property @abc.abstractmethod def cell_to_facets(self): """Returns a :class:`pyop2.types.dat.Dat` that maps from a cell index to the local facet types on each cell, including the relevant subdomain markers. The `i`-th local facet on a cell with index `c` has data `cell_facet[c][i]`. The local facet is exterior if `cell_facet[c][i][0] == 0`, and interior if the value is `1`. The value `cell_facet[c][i][1]` returns the subdomain marker of the facet. """ pass
[docs] def create_section(self, nodes_per_entity, real_tensorproduct=False, block_size=1, boundary_set=None): """Create a PETSc Section describing a function space. :arg nodes_per_entity: number of function space nodes per topological entity. :arg real_tensorproduct: If True, assume extruded space is actually Foo x Real. :arg block_size: The integer by which nodes_per_entity is uniformly multiplied to get the true data layout. :arg boundary_set: A set of boundary markers, indicating the subdomains a boundary condition is specified on. :returns: a new PETSc Section. """ return dmcommon.create_section(self, nodes_per_entity, on_base=real_tensorproduct, block_size=block_size, boundary_set=boundary_set)
[docs] def node_classes(self, nodes_per_entity, real_tensorproduct=False): """Compute node classes given nodes per entity. :arg nodes_per_entity: number of function space nodes per topological entity. :returns: the number of nodes in each of core, owned, and ghost classes. """ return tuple(np.dot(nodes_per_entity, self._entity_classes))
[docs] def make_cell_node_list(self, global_numbering, entity_dofs, entity_permutations, offsets): """Builds the DoF mapping. :arg global_numbering: Section describing the global DoF numbering :arg entity_dofs: FInAT element entity DoFs :arg entity_permutations: FInAT element entity permutations :arg offsets: layer offsets for each entity dof (may be None). """ return dmcommon.get_cell_nodes(self, global_numbering, entity_dofs, entity_permutations, offsets)
[docs] def make_dofs_per_plex_entity(self, entity_dofs): """Returns the number of DoFs per plex entity for each stratum, i.e. [#dofs / plex vertices, #dofs / plex edges, ...]. :arg entity_dofs: FInAT element entity DoFs """ return [len(entity_dofs[d][0]) for d in sorted(entity_dofs)]
[docs] def make_offset(self, entity_dofs, ndofs, real_tensorproduct=False): """Returns None (only for extruded use).""" return None
def _order_data_by_cell_index(self, column_list, cell_data): return cell_data[column_list]
[docs] @abc.abstractmethod def num_cells(self): pass
[docs] @abc.abstractmethod def num_facets(self): pass
[docs] @abc.abstractmethod def num_faces(self): pass
[docs] @abc.abstractmethod def num_edges(self): pass
[docs] @abc.abstractmethod def num_vertices(self): pass
[docs] @abc.abstractmethod def num_entities(self, d): pass
[docs] def size(self, d): return self.num_entities(d)
[docs] def cell_dimension(self): """Returns the cell dimension.""" return self.ufl_cell().topological_dimension()
[docs] def facet_dimension(self): """Returns the facet dimension.""" # Facets have co-dimension 1 return self.ufl_cell().topological_dimension() - 1
@property @abc.abstractmethod def cell_set(self): pass
[docs] @PETSc.Log.EventDecorator() def cell_subset(self, subdomain_id, all_integer_subdomain_ids=None): """Return a subset over cells with the given subdomain_id. :arg subdomain_id: The subdomain of the mesh to iterate over. Either an integer, an iterable of integers or the special subdomains ``"everywhere"`` or ``"otherwise"``. :arg all_integer_subdomain_ids: Information to interpret the ``"otherwise"`` subdomain. ``"otherwise"`` means all entities not explicitly enumerated by the integer subdomains provided here. For example, if all_integer_subdomain_ids is empty, then ``"otherwise" == "everywhere"``. If it contains ``(1, 2)``, then ``"otherwise"`` is all entities except those marked by subdomains 1 and 2. :returns: A :class:`pyop2.types.set.Subset` for iteration. """ if subdomain_id == "everywhere": return self.cell_set if subdomain_id == "otherwise": if all_integer_subdomain_ids is None: return self.cell_set key = ("otherwise", ) + all_integer_subdomain_ids else: key = subdomain_id try: return self._subsets[key] except KeyError: if subdomain_id == "otherwise": ids = tuple(dmcommon.get_cell_markers(self.topology_dm, self._cell_numbering, sid) for sid in all_integer_subdomain_ids) to_remove = np.unique(np.concatenate(ids)) indices = np.arange(self.cell_set.total_size, dtype=IntType) indices = np.delete(indices, to_remove) else: indices = dmcommon.get_cell_markers(self.topology_dm, self._cell_numbering, subdomain_id) return self._subsets.setdefault(key, op2.Subset(self.cell_set, indices))
[docs] @PETSc.Log.EventDecorator() def measure_set(self, integral_type, subdomain_id, all_integer_subdomain_ids=None): """Return an iteration set appropriate for the requested integral type. :arg integral_type: The type of the integral (should be a valid UFL measure). :arg subdomain_id: The subdomain of the mesh to iterate over. Either an integer, an iterable of integers or the special subdomains ``"everywhere"`` or ``"otherwise"``. :arg all_integer_subdomain_ids: Information to interpret the ``"otherwise"`` subdomain. ``"otherwise"`` means all entities not explicitly enumerated by the integer subdomains provided here. For example, if all_integer_subdomain_ids is empty, then ``"otherwise" == "everywhere"``. If it contains ``(1, 2)``, then ``"otherwise"`` is all entities except those marked by subdomains 1 and 2. This should be a dict mapping ``integral_type`` to the explicitly enumerated subdomain ids. :returns: A :class:`pyop2.types.set.Subset` for iteration. """ if all_integer_subdomain_ids is not None: all_integer_subdomain_ids = all_integer_subdomain_ids.get(integral_type, None) if integral_type == "cell": return self.cell_subset(subdomain_id, all_integer_subdomain_ids) elif integral_type in ("exterior_facet", "exterior_facet_vert", "exterior_facet_top", "exterior_facet_bottom"): return self.exterior_facets.measure_set(integral_type, subdomain_id, all_integer_subdomain_ids) elif integral_type in ("interior_facet", "interior_facet_vert", "interior_facet_horiz"): return self.interior_facets.measure_set(integral_type, subdomain_id, all_integer_subdomain_ids) else: raise ValueError("Unknown integral type '%s'" % integral_type)
[docs] @abc.abstractmethod def mark_entities(self, tf, label_value, label_name=None): """Mark selected entities. :arg tf: The :class:`.CoordinatelessFunction` object that marks selected entities as 1. f.function_space().ufl_element() must be "DP" or "DQ" (degree 0) to mark cell entities and "P" (degree 1) in 1D or "HDiv Trace" (degree 0) in 2D or 3D to mark facet entities. Can use "Q" (degree 2) functions for 3D hex meshes until we support "HDiv Trace" elements on hex. :arg lable_value: The value used in the label. :arg label_name: The name of the label to store entity selections. All entities must live on the same topological dimension. Currently, one can only mark cell or facet entities. """ pass
@utils.cached_property def extruded_periodic(self): return self.cell_set._extruded_periodic # submesh @utils.cached_property def submesh_ancesters(self): """Tuple of submesh ancesters.""" if self.submesh_parent: return (self, ) + self.submesh_parent.submesh_ancesters else: return (self, )
[docs] def submesh_youngest_common_ancester(self, other): """Return the youngest common ancester of self and other. Parameters ---------- other : AbstractMeshTopology The other mesh. Returns ------- AbstractMeshTopology or None Youngest common ancester or None if not found. """ # self --- ... --- m --- common --- common --- common # / # other --- ... --- m self_ancesters = list(self.submesh_ancesters) other_ancesters = list(other.submesh_ancesters) c = None while self_ancesters and other_ancesters: a = self_ancesters.pop() b = other_ancesters.pop() if a is b: c = a else: break return c
[docs] def submesh_map_child_parent(self, source_integral_type, source_subset_points, reverse=False): """Return the map from submesh child entities to submesh parent entities or its reverse. Parameters ---------- source_integral_type : str Integral type on the source mesh. source_subset_points : numpy.ndarray Subset points on the source mesh. reverse : bool If True, return the map from parent entities to child entities. Returns ------- tuple (map from source to target, integral type on the target mesh, subset points on the target mesh). """ raise NotImplementedError(f"Not implemented for {type(self)}")
[docs] def submesh_map_composed(self, other, other_integral_type, other_subset_points): """Create entity-entity map from ``other`` to `self`. Parameters ---------- other : AbstractMeshTopology Base mesh topology. other_integral_type : str Integral type on ``other``. other_subset_points : numpy.ndarray Subset points on ``other``; only used to identify (facet) integral_type on ``self``. Returns ------- tuple Tuple of `op2.ComposedMap` from other to self, integral_type on self, and points on self. """ common = self.submesh_youngest_common_ancester(other) if common is None: raise ValueError(f"Unable to create composed map between (sub)meshes: {self} and {other} are unrelated") maps = [] integral_type = other_integral_type subset_points = other_subset_points aa = other.submesh_ancesters for a in aa[:aa.index(common)]: m, integral_type, subset_points = a.submesh_map_child_parent(integral_type, subset_points) maps.append(m) bb = self.submesh_ancesters for b in reversed(bb[:bb.index(common)]): m, integral_type, subset_points = b.submesh_map_child_parent(integral_type, subset_points, reverse=True) maps.append(m) return op2.ComposedMap(*reversed(maps)), integral_type, subset_points
# trans mesh
[docs] def trans_mesh_entity_map(self, base_mesh, base_integral_type, base_subdomain_id, base_all_integer_subdomain_ids): """Create entity-entity (composed) map from base_mesh to `self`. Parameters ---------- base_mesh : AbstractMeshTopology Base mesh topology. base_integral_type : str Integral type on ``base_mesh``. base_subdomain_id : int Subdomain ID on ``base_mesh``. base_all_integer_subdomain_ids : tuple ``all_integer_subdomain_ids`` corresponding to ``base_mesh`` and ``base_integral_type``. Returns ------- tuple `tuple` of `op2.ComposedMap` from base_mesh to `self` and integral_type on `self`. """ raise NotImplementedError(f"Not implemented for {type(self)}")
[docs] class MeshTopology(AbstractMeshTopology): """A representation of mesh topology implemented on a PETSc DMPlex.""" @PETSc.Log.EventDecorator("CreateMesh") def __init__(self, plex, name, reorder, distribution_parameters, sfXB=None, perm_is=None, distribution_name=None, permutation_name=None, comm=COMM_WORLD): """Initialise a mesh topology. Parameters ---------- plex : PETSc.DMPlex `PETSc.DMPlex` representing the mesh topology. name : str Name of the mesh topology. reorder : bool Whether to reorder the mesh entities. distribution_parameters : dict Options controlling mesh distribution; see `Mesh` for details. sfXB : PETSc.PetscSF `PETSc.SF` that pushes forward the global point number slab ``[0, NX)`` to input (naive) plex (only significant when the mesh topology is loaded from file and only passed from inside `~.CheckpointFile`). perm_is : PETSc.IS `PETSc.IS` that is used as ``_dm_renumbering``; only makes sense if we know the exact parallel distribution of ``plex`` at the time of mesh topology construction like when we load mesh along with its distribution. If given, ``reorder`` param will be ignored. distribution_name : str Name of the parallel distribution; if `None`, automatically generated. permutation_name : str Name of the entity permutation (reordering); if `None`, automatically generated. comm : mpi4py.MPI.Comm Communicator. """ self._distribution_parameters = {} distribute = distribution_parameters.get("partition") if distribute is None: distribute = True self._distribution_parameters["partition"] = distribute partitioner_type = distribution_parameters.get("partitioner_type") self._set_partitioner(plex, distribute, partitioner_type) self._distribution_parameters["partitioner_type"] = self._get_partitioner(plex).getType() self._distribution_parameters["overlap_type"] = distribution_parameters.get("overlap_type", (DistributedMeshOverlapType.FACET, 1)) # Disable auto distribution and reordering before setFromOptions is called. plex.distributeSetDefault(False) plex.reorderSetDefault(PETSc.DMPlex.ReorderDefaultFlag.FALSE) super().__init__(plex, name, reorder, sfXB, perm_is, distribution_name, permutation_name, comm) def _distribute(self): # Distribute/redistribute the dm to all ranks distribute = self._distribution_parameters["partition"] if self.comm.size > 1 and distribute: plex = self.topology_dm # We distribute with overlap zero, in case we're going to # refine this mesh in parallel. Later, when we actually use # it, we grow the halo. original_name = plex.getName() sfBC = plex.distribute(overlap=0) plex.setName(original_name) self.sfBC = sfBC # plex carries a new dm after distribute, which # does not inherit partitioner from the old dm. # It probably makes sense as chaco does not work # once distributed. def _add_overlap(self): overlap_type, overlap = self._distribution_parameters["overlap_type"] if overlap < 0: raise ValueError("Overlap depth must be >= 0") if overlap_type == DistributedMeshOverlapType.NONE: if overlap > 0: raise ValueError("Can't have NONE overlap with overlap > 0") elif overlap_type == DistributedMeshOverlapType.FACET: dmcommon.set_adjacency_callback(self.topology_dm) original_name = self.topology_dm.getName() sfBC = self.topology_dm.distributeOverlap(overlap) self.topology_dm.setName(original_name) self.sfBC = self.sfBC.compose(sfBC) if self.sfBC else sfBC dmcommon.clear_adjacency_callback(self.topology_dm) self._grown_halos = True elif overlap_type == DistributedMeshOverlapType.VERTEX: # Default is FEM (vertex star) adjacency. original_name = self.topology_dm.getName() sfBC = self.topology_dm.distributeOverlap(overlap) self.topology_dm.setName(original_name) self.sfBC = self.sfBC.compose(sfBC) if self.sfBC else sfBC self._grown_halos = True else: raise ValueError("Unknown overlap type %r" % overlap_type) def _mark_entity_classes(self): dmcommon.mark_entity_classes(self.topology_dm) @utils.cached_property def _ufl_cell(self): plex = self.topology_dm tdim = plex.getDimension() # Allow empty local meshes on a process cStart, cEnd = plex.getHeightStratum(0) # cells if cStart == cEnd: nfacets = -1 else: nfacets = plex.getConeSize(cStart) # TODO: this needs to be updated for mixed-cell meshes. nfacets = self._comm.allreduce(nfacets, op=MPI.MAX) # Note that the geometric dimension of the cell is not set here # despite it being a property of a UFL cell. It will default to # equal the topological dimension. # Firedrake mesh topologies, by convention, which specifically # represent a mesh topology (as here) have geometric dimension # equal their topological dimension. This is reflected in the # corresponding UFL mesh. return ufl.Cell(_cells[tdim][nfacets]) @utils.cached_property def _ufl_mesh(self): cell = self._ufl_cell return ufl.Mesh(finat.ufl.VectorElement("Lagrange", cell, 1, dim=cell.topological_dimension())) @property def _default_reordering(self): with PETSc.Log.Event("Mesh: reorder"): old_to_new = self.topology_dm.getOrdering(PETSc.Mat.OrderingType.RCM).indices reordering = np.empty_like(old_to_new) reordering[old_to_new] = np.arange(old_to_new.size, dtype=old_to_new.dtype) return reordering def _renumber_entities(self, reorder): if reorder: reordering = self._default_reordering else: # No reordering reordering = None return dmcommon.plex_renumbering(self.topology_dm, self._entity_classes, reordering)[0] @utils.cached_property def cell_closure(self): """2D array of ordered cell closures Each row contains ordered cell entities for a cell, one row per cell. """ plex = self.topology_dm tdim = plex.getDimension() # Cell numbering and global vertex numbering cell_numbering = self._cell_numbering vertex_numbering = self._vertex_numbering.createGlobalSection(plex.getPointSF()) cell = self.ufl_cell() assert tdim == cell.topological_dimension() if self.submesh_parent is not None: return dmcommon.submesh_create_cell_closure_cell_submesh(plex, self.submesh_parent.topology_dm, cell_numbering, self.submesh_parent._cell_numbering, self.submesh_parent.cell_closure) elif cell.is_simplex(): topology = FIAT.ufc_cell(cell).get_topology() entity_per_cell = np.zeros(len(topology), dtype=IntType) for d, ents in topology.items(): entity_per_cell[d] = len(ents) return dmcommon.closure_ordering(plex, vertex_numbering, cell_numbering, entity_per_cell) elif cell.cellname() == "quadrilateral": from firedrake_citations import Citations Citations().register("Homolya2016") Citations().register("McRae2016") # Quadrilateral mesh cell_ranks = dmcommon.get_cell_remote_ranks(plex) facet_orientations = dmcommon.quadrilateral_facet_orientations( plex, vertex_numbering, cell_ranks) cell_orientations = dmcommon.orientations_facet2cell( plex, vertex_numbering, cell_ranks, facet_orientations, cell_numbering) dmcommon.exchange_cell_orientations(plex, cell_numbering, cell_orientations) return dmcommon.quadrilateral_closure_ordering( plex, vertex_numbering, cell_numbering, cell_orientations) elif cell.cellname() == "hexahedron": # TODO: Should change and use create_cell_closure() for all cell types. topology = FIAT.ufc_cell(cell).get_topology() closureSize = sum([len(ents) for _, ents in topology.items()]) return dmcommon.create_cell_closure(plex, cell_numbering, closureSize) else: raise NotImplementedError("Cell type '%s' not supported." % cell) @utils.cached_property def entity_orientations(self): return dmcommon.entity_orientations(self, self.cell_closure) @PETSc.Log.EventDecorator() def _facets(self, kind): if kind not in ["interior", "exterior"]: raise ValueError("Unknown facet type '%s'" % kind) dm = self.topology_dm facets, classes = dmcommon.get_facets_by_class(dm, (kind + "_facets"), self._facet_ordering) label = dmcommon.FACE_SETS_LABEL if dm.hasLabel(label): from mpi4py import MPI local_markers = set(dm.getLabelIdIS(label).indices) def merge_ids(x, y, datatype): return x.union(y) op = MPI.Op.Create(merge_ids, commute=True) unique_markers = np.asarray(sorted(self._comm.allreduce(local_markers, op=op)), dtype=IntType) op.Free() else: unique_markers = None local_facet_number, facet_cell = \ dmcommon.facet_numbering(dm, kind, facets, self._cell_numbering, self.cell_closure) point2facetnumber = np.full(facets.max(initial=0)+1, -1, dtype=IntType) point2facetnumber[facets] = np.arange(len(facets), dtype=IntType) obj = _Facets(self, facets, classes, kind, facet_cell, local_facet_number, unique_markers=unique_markers) obj.point2facetnumber = point2facetnumber return obj @utils.cached_property def exterior_facets(self): return self._facets("exterior") @utils.cached_property def interior_facets(self): return self._facets("interior") @utils.cached_property def cell_to_facets(self): """Returns a :class:`pyop2.types.dat.Dat` that maps from a cell index to the local facet types on each cell, including the relevant subdomain markers. The `i`-th local facet on a cell with index `c` has data `cell_facet[c][i]`. The local facet is exterior if `cell_facet[c][i][0] == 0`, and interior if the value is `1`. The value `cell_facet[c][i][1]` returns the subdomain marker of the facet. """ cell_facets = dmcommon.cell_facet_labeling(self.topology_dm, self._cell_numbering, self.cell_closure) if isinstance(self.cell_set, op2.ExtrudedSet): dataset = op2.DataSet(self.cell_set.parent, dim=cell_facets.shape[1:]) else: dataset = op2.DataSet(self.cell_set, dim=cell_facets.shape[1:]) return op2.Dat(dataset, cell_facets, dtype=cell_facets.dtype, name="cell-to-local-facet-dat")
[docs] def num_cells(self): cStart, cEnd = self.topology_dm.getHeightStratum(0) return cEnd - cStart
[docs] def num_facets(self): fStart, fEnd = self.topology_dm.getHeightStratum(1) return fEnd - fStart
[docs] def num_faces(self): fStart, fEnd = self.topology_dm.getDepthStratum(2) return fEnd - fStart
[docs] def num_edges(self): eStart, eEnd = self.topology_dm.getDepthStratum(1) return eEnd - eStart
[docs] def num_vertices(self): vStart, vEnd = self.topology_dm.getDepthStratum(0) return vEnd - vStart
[docs] def num_entities(self, d): eStart, eEnd = self.topology_dm.getDepthStratum(d) return eEnd - eStart
@utils.cached_property def cell_set(self): size = list(self._entity_classes[self.cell_dimension(), :]) return op2.Set(size, "Cells", comm=self._comm) @PETSc.Log.EventDecorator() def _set_partitioner(self, plex, distribute, partitioner_type=None): """Set partitioner for (re)distributing underlying plex over comm. :arg distribute: Boolean or (sizes, points)-tuple. If (sizes, point)- tuple is given, it is used to set shell partition. If Boolean, no-op. :kwarg partitioner_type: Partitioner to be used: "chaco", "ptscotch", "parmetis", "shell", or `None` (unspecified). Ignored if the distribute parameter specifies the distribution. """ if plex.comm.size == 1 or distribute is False: return partitioner = plex.getPartitioner() if distribute is True: if partitioner_type: if partitioner_type not in ["chaco", "ptscotch", "parmetis", "simple", "shell"]: raise ValueError( f"Unexpected partitioner_type: {partitioner_type}") if partitioner_type in ["chaco", "ptscotch", "parmetis"] and \ partitioner_type not in get_external_packages(): raise ValueError( f"Unable to use {partitioner_type} as PETSc is not " f"installed with {partitioner_type}." ) if partitioner_type == "chaco" and plex.isDistributed(): raise ValueError( "Unable to use 'chaco' mesh partitioner, 'chaco' is a " "serial partitioner, but the mesh is distributed." ) else: partitioner_type = DEFAULT_PARTITIONER partitioner.setType({ "chaco": partitioner.Type.CHACO, "ptscotch": partitioner.Type.PTSCOTCH, "parmetis": partitioner.Type.PARMETIS, "shell": partitioner.Type.SHELL, "simple": partitioner.Type.SIMPLE }[partitioner_type]) else: sizes, points = distribute partitioner.setType(partitioner.Type.SHELL) partitioner.setShellPartition(plex.comm.size, sizes, points) # Command line option `-petscpartitioner_type <type>` overrides. # partitioner.setFromOptions() is called from inside plex.setFromOptions(). @PETSc.Log.EventDecorator() def _get_partitioner(self, plex): """Get partitioner actually used for (re)distributing underlying plex over comm.""" return plex.getPartitioner()
[docs] def mark_entities(self, tf, label_value, label_name=None): import firedrake.function as function if not isinstance(label_value, numbers.Integral): raise TypeError(f"label_value must be an integer: got {label_value}") if label_name and not isinstance(label_name, str): raise TypeError(f"label_name must be `None` or a string: got {label_name}") if label_name in ("depth", "celltype", "ghost", "exterior_facets", "interior_facets", "pyop2_core", "pyop2_owned", "pyop2_ghost"): raise ValueError(f"Label name {label_name} is reserved") if not isinstance(tf, function.CoordinatelessFunction): raise TypeError(f"tf must be an instance of CoordinatelessFunction: {type(tf)} is not CoordinatelessFunction") tV = tf.function_space() elem = tV.ufl_element() if tV.mesh() is not self: raise RuntimeError(f"tf must be defined on {self}: {tf.mesh()} is not {self}") if elem.value_shape != (): raise RuntimeError(f"tf must be scalar: {elem.value_shape} != ()") if elem.family() in {"Discontinuous Lagrange", "DQ"} and elem.degree() == 0: # cells height = 0 label_name = label_name or dmcommon.CELL_SETS_LABEL elif (elem.family() == "HDiv Trace" and elem.degree() == 0 and self.cell_dimension() > 1) or \ (elem.family() == "Lagrange" and elem.degree() == 1 and self.cell_dimension() == 1) or \ (elem.family() == "Q" and elem.degree() == 2 and self.ufl_cell().cellname() == "hexahedron"): # facets height = 1 label_name = label_name or dmcommon.FACE_SETS_LABEL else: raise ValueError(f"indicator functions must be 'DP' or 'DQ' (degree 0) to mark cells and 'P' (degree 1) in 1D or 'HDiv Trace' (degree 0) in 2D or 3D to mark facets: got (family, degree) = ({elem.family()}, {elem.degree()})") plex = self.topology_dm if not plex.hasLabel(label_name): plex.createLabel(label_name) plex.clearLabelStratum(label_name, label_value) label = plex.getLabel(label_name) section = tV.dm.getSection() array = tf.dat.data_ro_with_halos.real.astype(IntType) dmcommon.mark_points_with_function_array(plex, section, height, array, label, label_value)
# submesh def _submesh_make_entity_entity_map(self, from_set, to_set, from_points, to_points, child_parent_map): assert from_set.total_size == len(from_points) assert to_set.total_size == len(to_points) with self.topology_dm.getSubpointIS() as subpoints: if child_parent_map: _, from_indices, to_indices = np.intersect1d(subpoints[from_points], to_points, return_indices=True) else: _, from_indices, to_indices = np.intersect1d(from_points, subpoints[to_points], return_indices=True) values = np.full(from_set.total_size, -1, dtype=IntType) values[from_indices] = to_indices return op2.Map(from_set, to_set, 1, values.reshape((-1, 1)), f"{self}_submesh_map_{from_set}_{to_set}") @utils.cached_property def submesh_child_cell_parent_cell_map(self): return self._submesh_make_entity_entity_map(self.cell_set, self.submesh_parent.cell_set, self.cell_closure[:, -1], self.submesh_parent.cell_closure[:, -1], True) @utils.cached_property def submesh_child_exterior_facet_parent_exterior_facet_map(self): return self._submesh_make_entity_entity_map(self.exterior_facets.set, self.submesh_parent.exterior_facets.set, self.exterior_facets.facets, self.submesh_parent.exterior_facets.facets, True) @utils.cached_property def submesh_child_exterior_facet_parent_interior_facet_map(self): return self._submesh_make_entity_entity_map(self.exterior_facets.set, self.submesh_parent.interior_facets.set, self.exterior_facets.facets, self.submesh_parent.interior_facets.facets, True) @utils.cached_property def submesh_child_interior_facet_parent_exterior_facet_map(self): raise RuntimeError("Should never happen") @utils.cached_property def submesh_child_interior_facet_parent_interior_facet_map(self): return self._submesh_make_entity_entity_map(self.interior_facets.set, self.submesh_parent.interior_facets.set, self.interior_facets.facets, self.submesh_parent.interior_facets.facets, True) @utils.cached_property def submesh_parent_cell_child_cell_map(self): return self._submesh_make_entity_entity_map(self.submesh_parent.cell_set, self.cell_set, self.submesh_parent.cell_closure[:, -1], self.cell_closure[:, -1], False) @utils.cached_property def submesh_parent_exterior_facet_child_exterior_facet_map(self): return self._submesh_make_entity_entity_map(self.submesh_parent.exterior_facets.set, self.exterior_facets.set, self.submesh_parent.exterior_facets.facets, self.exterior_facets.facets, False) @utils.cached_property def submesh_parent_exterior_facet_child_interior_facet_map(self): raise RuntimeError("Should never happen") @utils.cached_property def submesh_parent_interior_facet_child_exterior_facet_map(self): return self._submesh_make_entity_entity_map(self.submesh_parent.interior_facets.set, self.exterior_facets.set, self.submesh_parent.interior_facets.facets, self.exterior_facets.facets, False) @utils.cached_property def submesh_parent_interior_facet_child_interior_facet_map(self): return self._submesh_make_entity_entity_map(self.submesh_parent.interior_facets.set, self.interior_facets.set, self.submesh_parent.interior_facets.facets, self.interior_facets.facets, False)
[docs] def submesh_map_child_parent(self, source_integral_type, source_subset_points, reverse=False): """Return the map from submesh child entities to submesh parent entities or its reverse. Parameters ---------- source_integral_type : str Integral type on the source mesh. source_subset_points : numpy.ndarray Subset points on the source mesh. reverse : bool If True, return the map from parent entities to child entities. Returns ------- tuple (map from source to target, integral type on the target mesh, subset points on the target mesh). """ if self.submesh_parent is None: raise RuntimeError("Must only be called on submesh") if reverse: source = self.submesh_parent target = self else: source = self target = self.submesh_parent target_dim = target.topology_dm.getDimension() source_dim = source.topology_dm.getDimension() if source_dim != target_dim: raise NotImplementedError(f"Not implemented for (source_dim, target_dim) == ({source_dim}, {target_dim})") if source_integral_type == "cell": target_integral_type = "cell" target_subset_points = None elif source_integral_type in ["interior_facet", "exterior_facet"]: with self.topology_dm.getSubpointIS() as subpoints: if reverse: _, target_indices_int, source_indices_int = np.intersect1d(subpoints[target.interior_facets.facets], source_subset_points, return_indices=True) _, target_indices_ext, source_indices_ext = np.intersect1d(subpoints[target.exterior_facets.facets], source_subset_points, return_indices=True) else: target_subset_points = subpoints[source_subset_points] _, target_indices_int, source_indices_int = np.intersect1d(target.interior_facets.facets, target_subset_points, return_indices=True) _, target_indices_ext, source_indices_ext = np.intersect1d(target.exterior_facets.facets, target_subset_points, return_indices=True) n_int = len(source_indices_int) n_ext = len(source_indices_ext) n_int_max = self._comm.allreduce(n_int, op=MPI.MAX) n_ext_max = self._comm.allreduce(n_ext, op=MPI.MAX) if n_int_max > 0: if n_ext_max != 0: raise RuntimeError(f"integral_type on the target mesh is interior facet, but {n_ext_max} exterior facet entities are also included") if n_int > len(source_subset_points): raise RuntimeError("Found inconsistent data") target_integral_type = "interior_facet" elif n_ext_max > 0: if n_int_max != 0: raise RuntimeError(f"integral_type on the target mesh is exterior facet, but {n_int_max} interior facet entities are also included") if n_ext > len(source_subset_points): raise RuntimeError("Found inconsistent data") target_integral_type = "exterior_facet" else: raise RuntimeError("Can not find a map from source to target.") if reverse: if target_integral_type == "interior_facet": target_subset_points = target.interior_facets.facets[target_indices_int] elif target_integral_type == "exterior_facet": target_subset_points = target.exterior_facets.facets[target_indices_ext] else: raise NotImplementedError(f"Not implemented for (source_dim, target_dim, source_integral_type) == ({source_dim}, {target_dim}, {source_integral_type})") if reverse: map_ = getattr(self, f"submesh_parent_{source_integral_type}_child_{target_integral_type}_map") else: map_ = getattr(self, f"submesh_child_{source_integral_type}_parent_{target_integral_type}_map") return map_, target_integral_type, target_subset_points
# trans mesh
[docs] def trans_mesh_entity_map(self, base_mesh, base_integral_type, base_subdomain_id, base_all_integer_subdomain_ids): """Create entity-entity (composed) map from base_mesh to `self`. Parameters ---------- base_mesh : AbstractMeshTopology Base mesh topology. base_integral_type : str Integral type on ``base_mesh``. base_subdomain_id : int Subdomain ID on ``base_mesh``. base_all_integer_subdomain_ids : tuple ``all_integer_subdomain_ids`` corresponding to ``base_mesh`` and ``base_integral_type``. Returns ------- tuple `tuple` of `op2.ComposedMap` from base_mesh to `self` and integral_type on `self`. """ common = self.submesh_youngest_common_ancester(base_mesh) if common is None: raise NotImplementedError(f"Currently only implemented for (sub)meshes in the same family: got {self} and {base_mesh}") elif base_mesh is self: raise NotImplementedError("Currenlty can not return identity map") else: if base_integral_type == "cell": base_subset_points = None elif base_integral_type in ["interior_facet", "exterior_facet"]: base_subset = base_mesh.measure_set(base_integral_type, base_subdomain_id, all_integer_subdomain_ids=base_all_integer_subdomain_ids) if base_integral_type == "interior_facet": base_subset_points = base_mesh.interior_facets.facets[base_subset.indices] elif base_integral_type == "exterior_facet": base_subset_points = base_mesh.exterior_facets.facets[base_subset.indices] else: raise NotImplementedError(f"Unknown integration type : {base_integral_type}") composed_map, integral_type, _ = self.submesh_map_composed(base_mesh, base_integral_type, base_subset_points) return composed_map, integral_type
[docs] class ExtrudedMeshTopology(MeshTopology): """Representation of an extruded mesh topology.""" @PETSc.Log.EventDecorator() def __init__(self, mesh, layers, periodic=False, name=None): """Build an extruded mesh topology from an input mesh topology :arg mesh: the unstructured base mesh topology :arg layers: number of occurence of base layer in the "vertical" direction. :arg periodic: the flag for periodic extrusion; if True, only constant layer extrusion is allowed. :arg name: optional name of the extruded mesh topology. """ # TODO: refactor to call super().__init__ from firedrake_citations import Citations Citations().register("McRae2016") Citations().register("Bercea2016") # A cache of shared function space data on this mesh self._shared_data_cache = defaultdict(dict) if isinstance(mesh.topology, VertexOnlyMeshTopology): raise NotImplementedError("Extrusion not implemented for VertexOnlyMeshTopology") if layers.shape and periodic: raise ValueError("Must provide constant layer for periodic extrusion") mesh.init() self._base_mesh = mesh self.user_comm = mesh.comm self._comm = internal_comm(mesh._comm, self) if name is not None and name == mesh.name: raise ValueError("Extruded mesh topology and base mesh topology can not have the same name") self.name = name if name is not None else mesh.name + "_extruded" # TODO: These attributes are copied so that FunctionSpaceBase can # access them directly. Eventually we would want a better refactoring # of responsibilities between mesh and function space. self.topology_dm = mesh.topology_dm r"The PETSc DM representation of the mesh topology." self._dm_renumbering = mesh._dm_renumbering self._cell_numbering = mesh._cell_numbering self._entity_classes = mesh._entity_classes self._did_reordering = mesh._did_reordering self._distribution_parameters = mesh._distribution_parameters self._subsets = {} if layers.shape: self.variable_layers = True extents = extnum.layer_extents(self.topology_dm, self._cell_numbering, layers) if np.any(extents[:, 3] - extents[:, 2] <= 0): raise NotImplementedError("Vertically disconnected cells unsupported") self.layer_extents = extents """The layer extents for all mesh points. For variable layers, the layer extent does not match those for cells. A numpy array of layer extents (in PyOP2 format :math:`[start, stop)`), of shape ``(num_mesh_points, 4)`` where the first two extents are used for allocation and the last two for iteration. """ else: self.variable_layers = False self.cell_set = op2.ExtrudedSet(mesh.cell_set, layers=layers, extruded_periodic=periodic) # submesh self.submesh_parent = None @utils.cached_property def _ufl_cell(self): return ufl.TensorProductCell(self._base_mesh.ufl_cell(), ufl.interval) @utils.cached_property def _ufl_mesh(self): cell = self._ufl_cell return ufl.Mesh(finat.ufl.VectorElement("Lagrange", cell, 1, dim=cell.topological_dimension())) @utils.cached_property def cell_closure(self): """2D array of ordered cell closures Each row contains ordered cell entities for a cell, one row per cell. """ return self._base_mesh.cell_closure @utils.cached_property def entity_orientations(self): return self._base_mesh.entity_orientations def _facets(self, kind): if kind not in ["interior", "exterior"]: raise ValueError("Unknown facet type '%s'" % kind) base = getattr(self._base_mesh, "%s_facets" % kind) return _Facets(self, base.facets, base.classes, kind, base.facet_cell, base.local_facet_dat.data_ro_with_halos, unique_markers=base.unique_markers)
[docs] def make_cell_node_list(self, global_numbering, entity_dofs, entity_permutations, offsets): """Builds the DoF mapping. :arg global_numbering: Section describing the global DoF numbering :arg entity_dofs: FInAT element entity DoFs :arg entity_permutations: FInAT element entity permutations :arg offsets: layer offsets for each entity dof. """ if entity_permutations is None: # FInAT entity_permutations not yet implemented entity_dofs = eutils.flat_entity_dofs(entity_dofs) return super().make_cell_node_list(global_numbering, entity_dofs, None, offsets) assert sorted(entity_dofs.keys()) == sorted(entity_permutations.keys()), "Mismatching dimension tuples" for key in entity_dofs.keys(): assert sorted(entity_dofs[key].keys()) == sorted(entity_permutations[key].keys()), "Mismatching entity tuples" assert all(v in {0, 1} for _, v in entity_permutations), "Vertical dim index must be in [0, 1]" entity_dofs = eutils.flat_entity_dofs(entity_dofs) entity_permutations = eutils.flat_entity_permutations(entity_permutations) return super().make_cell_node_list(global_numbering, entity_dofs, entity_permutations, offsets)
[docs] def make_dofs_per_plex_entity(self, entity_dofs): """Returns the number of DoFs per plex entity for each stratum, i.e. [#dofs / plex vertices, #dofs / plex edges, ...]. each entry is a 2-tuple giving the number of dofs on, and above the given plex entity. :arg entity_dofs: FInAT element entity DoFs """ dofs_per_entity = np.zeros((1 + self._base_mesh.cell_dimension(), 2), dtype=IntType) for (b, v), entities in entity_dofs.items(): dofs_per_entity[b, v] += len(entities[0]) # Convert to a tuple of tuples with int (not numpy.intXX) values. This is # to give us a string representation like ((0, 1), (2, 3)) instead of # ((numpy.int32(0), numpy.int32(1)), (numpy.int32(2), numpy.int32(3))). return tuple( tuple(int(d_) for d_ in d) for d in dofs_per_entity )
[docs] @PETSc.Log.EventDecorator() def node_classes(self, nodes_per_entity, real_tensorproduct=False): """Compute node classes given nodes per entity. :arg nodes_per_entity: number of function space nodes per topological entity. :returns: the number of nodes in each of core, owned, and ghost classes. """ if real_tensorproduct: nodes = np.asarray(nodes_per_entity) nodes_per_entity = sum(nodes[:, i] for i in range(2)) return super(ExtrudedMeshTopology, self).node_classes(nodes_per_entity) elif self.variable_layers: return extnum.node_classes(self, nodes_per_entity) else: nodes = np.asarray(nodes_per_entity) if self.extruded_periodic: nodes_per_entity = sum(nodes[:, i]*(self.layers - 1) for i in range(2)) else: nodes_per_entity = sum(nodes[:, i]*(self.layers - i) for i in range(2)) return super(ExtrudedMeshTopology, self).node_classes(nodes_per_entity)
@utils.cached_property def layers(self): """Return the layers parameter used to construct the mesh topology, which is the number of layers represented by the number of occurences of the base mesh for non-variable layer mesh and an array of size (num_cells, 2), each row representing the (first layer index, last layer index + 1) pair for the associated cell, for variable layer mesh.""" if self.variable_layers: return self.cell_set.layers_array else: return self.cell_set.layers
[docs] def entity_layers(self, height, label=None): """Return the number of layers on each entity of a given plex height. :arg height: The height of the entity to compute the number of layers (0 -> cells, 1 -> facets, etc...) :arg label: An optional label name used to select points of the given height (if None, then all points are used). :returns: a numpy array of the number of layers on the asked for entities (or a single layer number for the constant layer case). """ if self.variable_layers: return extnum.entity_layers(self, height, label) else: return self.cell_set.layers
[docs] def cell_dimension(self): """Returns the cell dimension.""" return (self._base_mesh.cell_dimension(), 1)
[docs] def facet_dimension(self): """Returns the facet dimension. .. note:: This only returns the dimension of the "side" (vertical) facets, not the "top" or "bottom" (horizontal) facets. """ return (self._base_mesh.facet_dimension(), 1)
def _order_data_by_cell_index(self, column_list, cell_data): cell_list = [] for col in column_list: cell_list += list(range(col, col + (self.layers - 1))) return cell_data[cell_list] @property def _distribution_name(self): return self._base_mesh._distribution_name @property def _permutation_name(self): return self._base_mesh._permutation_name
[docs] def mark_entities(self, tf, label_value, label_name=None): raise NotImplementedError("Currently not implemented for ExtrudedMesh")
# TODO: Could this be merged with MeshTopology given that dmcommon.pyx # now covers DMSwarms and DMPlexes?
[docs] class VertexOnlyMeshTopology(AbstractMeshTopology): """ Representation of a vertex-only mesh topology immersed within another mesh. """ @PETSc.Log.EventDecorator() def __init__(self, swarm, parentmesh, name, reorder, input_ordering_swarm=None, perm_is=None, distribution_name=None, permutation_name=None): """Initialise a mesh topology. Parameters ---------- swarm : PETSc.DMSwarm `PETSc.DMSwarm` representing Particle In Cell (PIC) vertices immersed within a `PETSc.DM` stored in the ``parentmesh``. parentmesh : AbstractMeshTopology Mesh topology within which the vertex-only mesh topology is immersed. name : str Name of the mesh topology. reorder : bool Whether to reorder the mesh entities. input_ordering_swarm : PETSc.DMSwarm The swarm from which the input-ordering vertex-only mesh is constructed. perm_is : PETSc.IS `PETSc.IS` that is used as ``_dm_renumbering``; only makes sense if we know the exact parallel distribution of ``plex`` at the time of mesh topology construction like when we load mesh along with its distribution. If given, ``reorder`` param will be ignored. distribution_name : str Name of the parallel distribution; if `None`, automatically generated. permutation_name : str Name of the entity permutation (reordering); if `None`, automatically generated. """ if MPI.Comm.Compare(parentmesh.comm, swarm.comm.tompi4py()) not in {MPI.CONGRUENT, MPI.IDENT}: ValueError("Parent mesh communicator and swarm communicator are not congruent") self._distribution_parameters = {"partition": False, "partitioner_type": None, "overlap_type": (DistributedMeshOverlapType.NONE, 0)} self.input_ordering_swarm = input_ordering_swarm super().__init__(swarm, name, reorder, None, perm_is, distribution_name, permutation_name, parentmesh.comm) self._parent_mesh = parentmesh def _distribute(self): pass def _add_overlap(self): pass def _mark_entity_classes(self): if self.input_ordering_swarm: assert isinstance(self._parent_mesh, MeshTopology) dmcommon.mark_entity_classes_using_cell_dm(self.topology_dm) else: # Have an input-ordering vertex-only mesh. These should mark # all entities as pyop2 core, which mark_entity_classes will do. assert isinstance(self._parent_mesh, VertexOnlyMeshTopology) dmcommon.mark_entity_classes(self.topology_dm) @utils.cached_property def _ufl_cell(self): return ufl.Cell(_cells[0][0]) @utils.cached_property def _ufl_mesh(self): cell = self._ufl_cell return ufl.Mesh(finat.ufl.VectorElement("DG", cell, 0, dim=cell.topological_dimension())) def _renumber_entities(self, reorder): if reorder: swarm = self.topology_dm parent = self._parent_mesh.topology_dm swarm_parent_cell_nums = swarm.getField("DMSwarm_cellid") parent_renum = self._parent_mesh._dm_renumbering.getIndices() pStart, _ = parent.getChart() parent_renum_inv = np.empty_like(parent_renum) parent_renum_inv[parent_renum - pStart] = np.arange(len(parent_renum)) # Use kind = 'stable' to make the ordering deterministic. perm = np.argsort(parent_renum_inv[swarm_parent_cell_nums - pStart], kind='stable').astype(IntType) swarm.restoreField("DMSwarm_cellid") perm_is = PETSc.IS().create(comm=swarm.comm) perm_is.setType("general") perm_is.setIndices(perm) return perm_is else: return dmcommon.plex_renumbering(self.topology_dm, self._entity_classes, None)[0] @utils.cached_property # TODO: Recalculate if mesh moves def cell_closure(self): """2D array of ordered cell closures Each row contains ordered cell entities for a cell, one row per cell. """ swarm = self.topology_dm tdim = 0 # Cell numbering and global vertex numbering cell_numbering = self._cell_numbering vertex_numbering = self._vertex_numbering.createGlobalSection(swarm.getPointSF()) cell = self.ufl_cell() assert tdim == cell.topological_dimension() assert cell.is_simplex() import FIAT topology = FIAT.ufc_cell(cell).get_topology() entity_per_cell = np.zeros(len(topology), dtype=IntType) for d, ents in topology.items(): entity_per_cell[d] = len(ents) return dmcommon.closure_ordering(swarm, vertex_numbering, cell_numbering, entity_per_cell) entity_orientations = None def _facets(self, kind): """Raises an AttributeError since cells in a `VertexOnlyMeshTopology` have no facets. """ if kind not in ["interior", "exterior"]: raise ValueError("Unknown facet type '%s'" % kind) raise AttributeError("Cells in a VertexOnlyMeshTopology have no facets.") @utils.cached_property # TODO: Recalculate if mesh moves def exterior_facets(self): return self._facets("exterior") @utils.cached_property # TODO: Recalculate if mesh moves def interior_facets(self): return self._facets("interior") @utils.cached_property def cell_to_facets(self): """Raises an AttributeError since cells in a `VertexOnlyMeshTopology` have no facets. """ raise AttributeError("Cells in a VertexOnlyMeshTopology have no facets.")
[docs] def num_cells(self): return self.num_vertices()
[docs] def num_facets(self): return 0
[docs] def num_faces(self): return 0
[docs] def num_edges(self): return 0
[docs] def num_vertices(self): return self.topology_dm.getLocalSize()
[docs] def num_entities(self, d): if d > 0: return 0 else: return self.num_vertices()
@utils.cached_property # TODO: Recalculate if mesh moves def cell_set(self): size = list(self._entity_classes[self.cell_dimension(), :]) return op2.Set(size, "Cells", comm=self.comm) @utils.cached_property # TODO: Recalculate if mesh moves def cell_parent_cell_list(self): """Return a list of parent mesh cells numbers in vertex only mesh cell order. """ cell_parent_cell_list = np.copy(self.topology_dm.getField("parentcellnum")) self.topology_dm.restoreField("parentcellnum") return cell_parent_cell_list[self.cell_closure[:, -1]] @utils.cached_property # TODO: Recalculate if mesh moves def cell_parent_cell_map(self): """Return the :class:`pyop2.types.map.Map` from vertex only mesh cells to parent mesh cells. """ return op2.Map(self.cell_set, self._parent_mesh.cell_set, 1, self.cell_parent_cell_list, "cell_parent_cell") @utils.cached_property # TODO: Recalculate if mesh moves def cell_parent_base_cell_list(self): """Return a list of parent mesh base cells numbers in vertex only mesh cell order. """ if not isinstance(self._parent_mesh, ExtrudedMeshTopology): raise AttributeError("Parent mesh is not extruded") cell_parent_base_cell_list = np.copy(self.topology_dm.getField("parentcellbasenum")) self.topology_dm.restoreField("parentcellbasenum") return cell_parent_base_cell_list[self.cell_closure[:, -1]] @utils.cached_property # TODO: Recalculate if mesh moves def cell_parent_base_cell_map(self): """Return the :class:`pyop2.types.map.Map` from vertex only mesh cells to parent mesh base cells. """ if not isinstance(self._parent_mesh, ExtrudedMeshTopology): raise AttributeError("Parent mesh is not extruded.") return op2.Map(self.cell_set, self._parent_mesh.cell_set, 1, self.cell_parent_base_cell_list, "cell_parent_base_cell") @utils.cached_property # TODO: Recalculate if mesh moves def cell_parent_extrusion_height_list(self): """Return a list of parent mesh extrusion heights in vertex only mesh cell order. """ if not isinstance(self._parent_mesh, ExtrudedMeshTopology): raise AttributeError("Parent mesh is not extruded.") cell_parent_extrusion_height_list = np.copy(self.topology_dm.getField("parentcellextrusionheight")) self.topology_dm.restoreField("parentcellextrusionheight") return cell_parent_extrusion_height_list[self.cell_closure[:, -1]] @utils.cached_property # TODO: Recalculate if mesh moves def cell_parent_extrusion_height_map(self): """Return the :class:`pyop2.types.map.Map` from vertex only mesh cells to parent mesh extrusion heights. """ if not isinstance(self._parent_mesh, ExtrudedMeshTopology): raise AttributeError("Parent mesh is not extruded.") return op2.Map(self.cell_set, self._parent_mesh.cell_set, 1, self.cell_parent_extrusion_height_list, "cell_parent_extrusion_height")
[docs] def mark_entities(self, tf, label_value, label_name=None): raise NotImplementedError("Currently not implemented for VertexOnlyMesh")
@utils.cached_property # TODO: Recalculate if mesh moves def cell_global_index(self): """Return a list of unique cell IDs in vertex only mesh cell order.""" cell_global_index = np.copy(self.topology_dm.getField("globalindex")) self.topology_dm.restoreField("globalindex") return cell_global_index @utils.cached_property # TODO: Recalculate if mesh moves def input_ordering(self): """ Return the input ordering of the mesh vertices as a :class:`~.VertexOnlyMeshTopology` whilst preserving other information, such as the global indices and parent mesh cell information. Notes ----- If ``redundant=True`` at mesh creation, all the vertices will be returned on rank 0. Any points that were not found in the original mesh when it was created will still be present here in their originally supplied order. """ if not isinstance(self.topology, VertexOnlyMeshTopology): raise AttributeError("Input ordering is only defined for vertex-only meshes.") # Make the VOM which uses the original ordering of the points if self.input_ordering_swarm: return VertexOnlyMeshTopology( self.input_ordering_swarm, self, name=self.input_ordering_swarm.getName(), reorder=False, ) @staticmethod def _make_input_ordering_sf(swarm, nroots, ilocal): # ilocal = None -> leaves are swarm points [0, 1, 2, ...). # ilocal can also be Firedrake cell numbers. sf = PETSc.SF().create(comm=swarm.comm) input_ranks = swarm.getField("inputrank") input_indices = swarm.getField("inputindex") nleaves = len(input_ranks) if ilocal is not None and nleaves != len(ilocal): swarm.restoreField("inputrank") swarm.restoreField("inputindex") raise RuntimeError(f"Mismatching leaves: nleaves {nleaves} != len(ilocal) {len(ilocal)}") input_ranks_and_idxs = np.empty(2 * nleaves, dtype=IntType) input_ranks_and_idxs[0::2] = input_ranks input_ranks_and_idxs[1::2] = input_indices swarm.restoreField("inputrank") swarm.restoreField("inputindex") sf.setGraph(nroots, ilocal, input_ranks_and_idxs) return sf @utils.cached_property # TODO: Recalculate if mesh moves def input_ordering_sf(self): """ Return a PETSc SF which has :func:`~.VertexOnlyMesh` input ordering vertices as roots and this mesh's vertices (including any halo cells) as leaves. """ if not isinstance(self.topology, VertexOnlyMeshTopology): raise AttributeError("Input ordering is only defined for vertex-only meshes.") nroots = self.input_ordering.num_cells() e_p_map = self.cell_closure[:, -1] # cell-entity -> swarm-point map ilocal = np.empty_like(e_p_map) if len(e_p_map) > 0: cStart = e_p_map.min() # smallest swarm point number ilocal[e_p_map - cStart] = np.arange(len(e_p_map)) return VertexOnlyMeshTopology._make_input_ordering_sf(self.topology_dm, nroots, ilocal) @utils.cached_property # TODO: Recalculate if mesh moves def input_ordering_without_halos_sf(self): """ Return a PETSc SF which has :func:`~.VertexOnlyMesh` input ordering vertices as roots and this mesh's non-halo vertices as leaves. """ # The leaves have been ordered according to the pyop2 classes with non-halo # cells first; self.cell_set.size is the number of rank-local non-halo cells. return self.input_ordering_sf.createEmbeddedLeafSF(np.arange(self.cell_set.size, dtype=IntType))
class CellOrientationsRuntimeError(RuntimeError): """Exception raised when there are problems with cell orientations.""" pass class MeshGeometryCargo: """Helper class carrying data for a :class:`MeshGeometry`. It is required because it permits Firedrake to have stripped forms that still know that they are on an extruded mesh (for example). """ def __init__(self, ufl_id): self._ufl_id = ufl_id def ufl_id(self): return self._ufl_id def init(self, coordinates): """Initialise the cargo. This function is separate to __init__ because of the two-step process we have for initialising a :class:`MeshGeometry`. """ self.topology = coordinates.function_space().mesh() self.coordinates = coordinates self.geometric_shared_data_cache = defaultdict(dict)
[docs] class MeshGeometry(ufl.Mesh, MeshGeometryMixin): """A representation of mesh topology and geometry.""" def __new__(cls, element, comm): """Create mesh geometry object.""" utils._init() mesh = super(MeshGeometry, cls).__new__(cls) uid = utils._new_uid(internal_comm(comm, mesh)) mesh.uid = uid cargo = MeshGeometryCargo(uid) assert isinstance(element, finat.ufl.FiniteElementBase) ufl.Mesh.__init__(mesh, element, ufl_id=mesh.uid, cargo=cargo) return mesh @MeshGeometryMixin._ad_annotate_init def __init__(self, coordinates): """Initialise a mesh geometry from coordinates. Parameters ---------- coordinates : CoordinatelessFunction The `CoordinatelessFunction` containing the coordinates. """ topology = coordinates.function_space().mesh() # this is codegen information so we attach it to the MeshGeometry rather than its cargo self.extruded = isinstance(topology, ExtrudedMeshTopology) self.variable_layers = self.extruded and topology.variable_layers # initialise the mesh cargo self.ufl_cargo().init(coordinates) # Cache mesh object on the coordinateless coordinates function coordinates._as_mesh_geometry = weakref.ref(self) # submesh self.submesh_parent = None def _ufl_signature_data_(self, *args, **kwargs): return (type(self), self.extruded, self.variable_layers, super()._ufl_signature_data_(*args, **kwargs))
[docs] def init(self): """Finish the initialisation of the mesh. Most of the time this is carried out automatically, however, in some cases (for example accessing a property of the mesh directly after constructing it) you need to call this manually.""" if hasattr(self, '_callback'): self._callback(self)
def _init_topology(self, topology): """Initialise the topology. :arg topology: The :class:`.MeshTopology` object. A mesh is fully initialised with its topology and coordinates. In this method we partially initialise the mesh by registering its topology. We also set the `_callback` attribute that is later called to set its coordinates and finalise the initialisation. """ import firedrake.functionspace as functionspace import firedrake.function as function self._topology = topology def callback(self): """Finish initialisation.""" del self._callback # Finish the initialisation of mesh topology self.topology.init() coordinates_fs = functionspace.FunctionSpace(self.topology, self.ufl_coordinate_element()) coordinates_data = dmcommon.reordered_coords(topology.topology_dm, coordinates_fs.dm.getDefaultSection(), (self.num_vertices(), self.ufl_coordinate_element().cell.geometric_dimension())) coordinates = function.CoordinatelessFunction(coordinates_fs, val=coordinates_data, name=_generate_default_mesh_coordinates_name(self.name)) self.__init__(coordinates) self._callback = callback @property def topology(self): """The underlying mesh topology object.""" return self.ufl_cargo().topology @topology.setter def topology(self, val): self.ufl_cargo().topology = val @property def _topology(self): return self.topology @_topology.setter def _topology(self, val): self.topology = val @property def _parent_mesh(self): return self.ufl_cargo()._parent_mesh @_parent_mesh.setter def _parent_mesh(self, val): self.ufl_cargo()._parent_mesh = val @property def _coordinates(self): return self.ufl_cargo().coordinates @property def _geometric_shared_data_cache(self): return self.ufl_cargo().geometric_shared_data_cache @property def topological(self): """Alias of topology. This is to ensure consistent naming for some multigrid codes.""" return self._topology @property def _topology_dm(self): """Alias of topology_dm""" from warnings import warn warn("_topology_dm is deprecated (use topology_dm instead)", DeprecationWarning, stacklevel=2) return self.topology_dm @property @MeshGeometryMixin._ad_annotate_coordinates_function def _coordinates_function(self): """The :class:`.Function` containing the coordinates of this mesh.""" import firedrake.functionspaceimpl as functionspaceimpl import firedrake.function as function if hasattr(self.ufl_cargo(), "_coordinates_function"): return self.ufl_cargo()._coordinates_function else: self.init() coordinates_fs = self._coordinates.function_space() V = functionspaceimpl.WithGeometry.create(coordinates_fs, self) f = function.Function(V, val=self._coordinates) self.ufl_cargo()._coordinates_function = f return f @property def coordinates(self): """The :class:`.Function` containing the coordinates of this mesh.""" return self._coordinates_function @coordinates.setter def coordinates(self, value): message = """Cannot re-assign the coordinates. You are free to change the coordinate values, but if you need a different coordinate function space, use Mesh(f) to create a new mesh object whose coordinates are f's values. (This will not copy the values from f.)""" raise AttributeError(message) @utils.cached_property def cell_sizes(self): """A :class:`~.Function` in the :math:`P^1` space containing the local mesh size. This is computed by the :math:`L^2` projection of the local mesh element size.""" from firedrake.ufl_expr import CellSize from firedrake.functionspace import FunctionSpace from firedrake.projection import project P1 = FunctionSpace(self, "Lagrange", 1) return project(CellSize(self), P1)
[docs] def clear_cell_sizes(self): """Reset the :attr:`cell_sizes` field on this mesh geometry. Use this if you move the mesh. """ try: del self.cell_size except AttributeError: pass
@property def tolerance(self): """The relative tolerance (i.e. as defined on the reference cell) for the distance a point can be from a cell and still be considered to be in the cell. Increase this if points at mesh boundaries (either rank local or global) are reported as being outside the mesh, for example when creating a :class:`VertexOnlyMesh`. Note that this tolerance uses an L1 distance (aka 'manhattan', 'taxicab' or rectilinear distance) so will scale with the dimension of the mesh. If this property is not set (i.e. set to ``None``) no tolerance is added to the bounding box and points deemed at all outside the mesh, even by floating point error distances, will be deemed to be outside it. Notes ----- After changing tolerance any requests for :attr:`spatial_index` will cause the spatial index to be rebuilt with the new tolerance which may take some time. """ return self._tolerance @tolerance.setter def tolerance(self, value): if not isinstance(value, numbers.Number): raise TypeError("tolerance must be a number") if value != self._tolerance: self.clear_spatial_index() self._tolerance = value
[docs] def clear_spatial_index(self): """Reset the :attr:`spatial_index` on this mesh geometry. Use this if you move the mesh (for example by reassigning to the coordinate field).""" try: del self.spatial_index except AttributeError: pass
@utils.cached_property def spatial_index(self): """Spatial index to quickly find which cell contains a given point. Notes ----- If this mesh has a :attr:`tolerance` property, which should be a float, this tolerance is added to the extrama of the spatial index so that points just outside the mesh, within tolerance, can be found. """ from firedrake import function, functionspace from firedrake.parloops import par_loop, READ, MIN, MAX gdim = self.ufl_cell().geometric_dimension() if gdim <= 1: info_red("libspatialindex does not support 1-dimension, falling back on brute force.") return None # Calculate the bounding boxes for all cells by running a kernel V = functionspace.VectorFunctionSpace(self, "DG", 0, dim=gdim) coords_min = function.Function(V, dtype=RealType) coords_max = function.Function(V, dtype=RealType) coords_min.dat.data.fill(np.inf) coords_max.dat.data.fill(-np.inf) if utils.complex_mode: if not np.allclose(self.coordinates.dat.data_ro.imag, 0): raise ValueError("Coordinate field has non-zero imaginary part") coords = function.Function(self.coordinates.function_space(), val=self.coordinates.dat.data_ro_with_halos.real.copy(), dtype=RealType) else: coords = self.coordinates cell_node_list = self.coordinates.function_space().cell_node_list _, nodes_per_cell = cell_node_list.shape domain = "{{[d, i]: 0 <= d < {0} and 0 <= i < {1}}}".format(gdim, nodes_per_cell) instructions = """ for d, i f_min[0, d] = fmin(f_min[0, d], f[i, d]) f_max[0, d] = fmax(f_max[0, d], f[i, d]) end """ par_loop((domain, instructions), ufl.dx, {'f': (coords, READ), 'f_min': (coords_min, MIN), 'f_max': (coords_max, MAX)}) # Reorder bounding boxes according to the cell indices we use column_list = V.cell_node_list.reshape(-1) coords_min = self._order_data_by_cell_index(column_list, coords_min.dat.data_ro_with_halos) coords_max = self._order_data_by_cell_index(column_list, coords_max.dat.data_ro_with_halos) # Change min and max to refer to an n-hypercube, where n is the # geometric dimension of the mesh, centred on the midpoint of the # bounding box. Its side length is the L1 diameter of the bounding box. # This aids point evaluation on immersed manifolds and other cases # where points may be just off the mesh but should be evaluated. # TODO: This is perhaps unnecessary when we aren't in these special # cases. # We also push max and min out so we can find points on the boundary # within the mesh tolerance. # NOTE: getattr doesn't work here due to the inheritance games that are # going on in getattr. tolerance = self.tolerance if hasattr(self, "tolerance") else 0.0 coords_mid = (coords_max + coords_min)/2 d = np.max(coords_max - coords_min, axis=1)[:, None] coords_min = coords_mid - (tolerance + 0.5)*d coords_max = coords_mid + (tolerance + 0.5)*d # Build spatial index return spatialindex.from_regions(coords_min, coords_max)
[docs] @PETSc.Log.EventDecorator() def locate_cell(self, x, tolerance=None, cell_ignore=None): """Locate cell containing a given point. :arg x: point coordinates :kwarg tolerance: Tolerance for checking if a point is in a cell. Default is this mesh's :attr:`tolerance` property. Changing this from default will cause the spatial index to be rebuilt which can take some time. :kwarg cell_ignore: Cell number to ignore in the search. :returns: cell number (int), or None (if the point is not in the domain) """ return self.locate_cell_and_reference_coordinate(x, tolerance=tolerance, cell_ignore=cell_ignore)[0]
[docs] def locate_reference_coordinate(self, x, tolerance=None, cell_ignore=None): """Get reference coordinates of a given point in its cell. Which cell the point is in can be queried with the locate_cell method. :arg x: point coordinates :kwarg tolerance: Tolerance for checking if a point is in a cell. Default is this mesh's :attr:`tolerance` property. Changing this from default will cause the spatial index to be rebuilt which can take some time. :kwarg cell_ignore: Cell number to ignore in the search. :returns: reference coordinates within cell (numpy array) or None (if the point is not in the domain) """ return self.locate_cell_and_reference_coordinate(x, tolerance=tolerance, cell_ignore=cell_ignore)[1]
[docs] def locate_cell_and_reference_coordinate(self, x, tolerance=None, cell_ignore=None): """Locate cell containing a given point and the reference coordinates of the point within the cell. :arg x: point coordinates :kwarg tolerance: Tolerance for checking if a point is in a cell. Default is this mesh's :attr:`tolerance` property. Changing this from default will cause the spatial index to be rebuilt which can take some time. :kwarg cell_ignore: Cell number to ignore in the search. :returns: tuple either (cell number, reference coordinates) of type (int, numpy array), or, when point is not in the domain, (None, None). """ x = np.asarray(x) if x.size != self.geometric_dimension(): raise ValueError("Point must have the same geometric dimension as the mesh") x = x.reshape((1, self.geometric_dimension())) cells, ref_coords, _ = self.locate_cells_ref_coords_and_dists(x, tolerance=tolerance, cells_ignore=[[cell_ignore]]) if cells[0] == -1: return None, None return cells[0], ref_coords[0]
[docs] def locate_cells_ref_coords_and_dists(self, xs, tolerance=None, cells_ignore=None): """Locate cell containing a given point and the reference coordinates of the point within the cell. :arg xs: 1 or more point coordinates of shape (npoints, gdim) :kwarg tolerance: Tolerance for checking if a point is in a cell. Default is this mesh's :attr:`tolerance` property. Changing this from default will cause the spatial index to be rebuilt which can take some time. :kwarg cells_ignore: Cell numbers to ignore in the search for each point in xs. Shape should be (npoints, n_ignore_pts). Each column corresponds to a single coordinate in xs. To not ignore any cells, pass None. To ensure a full cell search for any given point, set the corresponding entries to -1. :returns: tuple either (cell numbers array, reference coordinates array, ref_cell_dists_l1 array) of type (array of ints, array of floats of size (npoints, gdim), array of floats). The cell numbers array contains -1 for points not in the domain: the reference coordinates and distances are meaningless for these points. """ if self.variable_layers: raise NotImplementedError("Cell location not implemented for variable layers") if tolerance is None: tolerance = self.tolerance else: self.tolerance = tolerance xs = np.asarray(xs, dtype=utils.ScalarType) xs = xs.real.copy() if xs.shape[1] != self.geometric_dimension(): raise ValueError("Point coordinate dimension does not match mesh geometric dimension") Xs = np.empty_like(xs) npoints = len(xs) if cells_ignore is None or cells_ignore[0][0] is None: cells_ignore = np.full((npoints, 1), -1, dtype=IntType, order="C") else: cells_ignore = np.asarray(cells_ignore, dtype=IntType, order="C") if cells_ignore.shape[0] != npoints: raise ValueError("Number of cells to ignore does not match number of points") assert cells_ignore.shape == (npoints, cells_ignore.shape[1]) ref_cell_dists_l1 = np.empty(npoints, dtype=utils.RealType) cells = np.empty(npoints, dtype=IntType) assert xs.size == npoints * self.geometric_dimension() self._c_locator(tolerance=tolerance)(self.coordinates._ctypes, xs.ctypes.data_as(ctypes.POINTER(ctypes.c_double)), Xs.ctypes.data_as(ctypes.POINTER(ctypes.c_double)), ref_cell_dists_l1.ctypes.data_as(ctypes.POINTER(ctypes.c_double)), cells.ctypes.data_as(ctypes.POINTER(ctypes.c_int)), npoints, cells_ignore.shape[1], cells_ignore) return cells, Xs, ref_cell_dists_l1
def _c_locator(self, tolerance=None): from pyop2 import compilation from pyop2.utils import get_petsc_dir import firedrake.function as function import firedrake.pointquery_utils as pq_utils cache = self.__dict__.setdefault("_c_locator_cache", {}) try: return cache[tolerance] except KeyError: IntTypeC = as_cstr(IntType) src = pq_utils.src_locate_cell(self, tolerance=tolerance) src += dedent(f""" int locator(struct Function *f, double *x, double *X, double *ref_cell_dists_l1, {IntTypeC} *cells, {IntTypeC} npoints, size_t ncells_ignore, int* cells_ignore) {{ {IntTypeC} j = 0; /* index into x and X */ for({IntTypeC} i=0; i<npoints; i++) {{ /* i is the index into cells and ref_cell_dists_l1 */ /* The type definitions and arguments used here are defined as statics in pointquery_utils.py */ struct ReferenceCoords temp_reference_coords, found_reference_coords; /* to_reference_coords and to_reference_coords_xtr are defined in pointquery_utils.py. If they contain python calls, this loop will not run at c-loop speed. */ /* cells_ignore has shape (npoints, ncells_ignore) - find the ith row */ int *cells_ignore_i = cells_ignore + i*ncells_ignore; cells[i] = locate_cell(f, &x[j], {self.geometric_dimension()}, &to_reference_coords, &to_reference_coords_xtr, &temp_reference_coords, &found_reference_coords, &ref_cell_dists_l1[i], ncells_ignore, cells_ignore_i); for (int k = 0; k < {self.geometric_dimension()}; k++) {{ X[j] = found_reference_coords.X[k]; j++; }} }} return 0; }} """) libspatialindex_so = Path(rtree.core.rt._name).absolute() lsi_runpath = f"-Wl,-rpath,{libspatialindex_so.parent}" locator = compilation.load( src, "c", "locator", cppargs=[ f"-I{os.path.dirname(__file__)}", f"-I{sys.prefix}/include", f"-I{rtree.finder.get_include()}" ] + [f"-I{d}/include" for d in get_petsc_dir()], ldargs=[ f"-L{sys.prefix}/lib", str(libspatialindex_so), f"-Wl,-rpath,{sys.prefix}/lib", lsi_runpath ], comm=self.comm ) locator.argtypes = [ctypes.POINTER(function._CFunction), ctypes.POINTER(ctypes.c_double), ctypes.POINTER(ctypes.c_double), ctypes.POINTER(ctypes.c_double), ctypes.POINTER(ctypes.c_int), ctypes.c_size_t, ctypes.c_size_t, np.ctypeslib.ndpointer(ctypes.c_int, flags="C_CONTIGUOUS")] locator.restype = ctypes.c_int return cache.setdefault(tolerance, locator) @utils.cached_property # TODO: Recalculate if mesh moves. Extend this for regular meshes. def input_ordering(self): """ Return the input ordering of the mesh vertices as a :func:`~.VertexOnlyMesh` whilst preserving other information, such as the global indices and parent mesh cell information. Notes ----- If ``redundant=True`` at mesh creation, all the vertices will be returned on rank 0. Any points that were not found in the original mesh when it was created will still be present here in their originally supplied order. """ if not isinstance(self.topology, VertexOnlyMeshTopology): raise AttributeError("Input ordering is only defined for vertex-only meshes.") _input_ordering = make_vom_from_vom_topology(self.topology.input_ordering, self.name + "_input_ordering") if _input_ordering: _input_ordering._parent_mesh = self _input_ordering.init() return _input_ordering
[docs] def cell_orientations(self): """Return the orientation of each cell in the mesh. Use :meth:`.init_cell_orientations` to initialise.""" # View `_cell_orientations` (`CoordinatelessFunction`) as a property of # `MeshGeometry` as opposed to one of `MeshTopology`, and treat it just like # `_coordinates` (`CoordinatelessFunction`) so that we have: # -- Regular MeshGeometry = MeshTopology + `_coordinates`, # -- Immersed MeshGeometry = MeshTopology + `_coordinates` + `_cell_orientations`. # Here, `_coordinates` and `_cell_orientations` both represent some geometric # properties (i.e., "coordinates" and "cell normals"). # # Two `MeshGeometry`s can share the same `MeshTopology` and `_coordinates` while # having distinct definition of "cell normals"; they are then simply regarded as two # distinct meshes as `dot(expr, cell_normal) * dx` in general gives different results. # # Storing `_cell_orientations` in `MeshTopology` would make the `MeshTopology` # object only useful for specific definition of "cell normals". if not hasattr(self, '_cell_orientations'): raise CellOrientationsRuntimeError("No cell orientations found, did you forget to call init_cell_orientations?") return self._cell_orientations
[docs] @PETSc.Log.EventDecorator() def init_cell_orientations(self, expr): """Compute and initialise meth:`cell_orientations` relative to a specified orientation. :arg expr: a UFL expression evaluated to produce a reference normal direction. """ import firedrake.function as function import firedrake.functionspace as functionspace if self.ufl_cell() not in _supported_embedded_cell_types: raise NotImplementedError('Only implemented for intervals embedded in 2d and triangles and quadrilaterals embedded in 3d') if hasattr(self, '_cell_orientations'): raise CellOrientationsRuntimeError("init_cell_orientations already called, did you mean to do so again?") if not isinstance(expr, ufl.classes.Expr): raise TypeError("UFL expression expected!") if expr.ufl_shape != (self.ufl_cell().geometric_dimension(), ): raise ValueError(f"Mismatching shapes: expr.ufl_shape ({expr.ufl_shape}) != (self.ufl_cell().geometric_dimension(), ) (({self.ufl_cell().geometric_dimension}, ))") fs = functionspace.FunctionSpace(self, 'DG', 0) x = ufl.SpatialCoordinate(self) f = function.Function(fs) if self.topological_dimension() == 1: normal = ufl.as_vector((-ReferenceGrad(x)[1, 0], ReferenceGrad(x)[0, 0])) else: # self.topological_dimension() == 2 normal = ufl.cross(ReferenceGrad(x)[:, 0], ReferenceGrad(x)[:, 1]) f.interpolate(ufl.dot(expr, normal)) cell_orientations = function.Function(fs, name="cell_orientations", dtype=np.int32) cell_orientations.dat.data[:] = (f.dat.data_ro < 0) self._cell_orientations = cell_orientations.topological
def __getattr__(self, name): val = getattr(self._topology, name) setattr(self, name, val) return val def __dir__(self): current = super(MeshGeometry, self).__dir__() return list(OrderedDict.fromkeys(dir(self._topology) + current))
[docs] def mark_entities(self, f, label_value, label_name=None): """Mark selected entities. :arg f: The :class:`.Function` object that marks selected entities as 1. f.function_space().ufl_element() must be "DP" or "DQ" (degree 0) to mark cell entities and "P" (degree 1) in 1D or "HDiv Trace" (degree 0) in 2D or 3D to mark facet entities. Can use "Q" (degree 2) functions for 3D hex meshes until we support "HDiv Trace" elements on hex. :arg lable_value: The value used in the label. :arg label_name: The name of the label to store entity selections. All entities must live on the same topological dimension. Currently, one can only mark cell or facet entities. """ self.topology.mark_entities(f.topological, label_value, label_name)
@PETSc.Log.EventDecorator() def make_mesh_from_coordinates(coordinates, name, tolerance=0.5): """Given a coordinate field build a new mesh, using said coordinate field. Parameters ---------- coordinates : CoordinatelessFunction The `CoordinatelessFunction` from which mesh is made. name : str The name of the mesh. tolerance : numbers.Number The tolerance; see `Mesh`. comm: mpi4py.Intracomm Communicator. Returns ------- MeshGeometry The mesh. """ if hasattr(coordinates, '_as_mesh_geometry'): mesh = coordinates._as_mesh_geometry() if mesh is not None: return mesh V = coordinates.function_space() element = coordinates.ufl_element() if V.rank != 1 or len(element.value_shape) != 1: raise ValueError("Coordinates must be from a rank-1 FunctionSpace with rank-1 value_shape.") assert V.mesh().ufl_cell().topological_dimension() <= V.value_size # Build coordinate element cell = element.cell.reconstruct(geometric_dimension=V.value_size) element = element.reconstruct(cell=cell) mesh = MeshGeometry.__new__(MeshGeometry, element, coordinates.comm) mesh.__init__(coordinates) mesh.name = name # Mark mesh as being made from coordinates mesh._made_from_coordinates = True mesh._tolerance = tolerance return mesh def make_mesh_from_mesh_topology(topology, name, tolerance=0.5): """Make mesh from tpology. Parameters ---------- topology : MeshTopology The `MeshTopology` from which mesh is made. name : str The name of the mesh. tolerance : numbers.Number The tolerance; see `Mesh`. Returns ------- MeshGeometry The mesh. """ # Construct coordinate element # TODO: meshfile might indicates higher-order coordinate element cell = topology.ufl_cell() geometric_dim = topology.topology_dm.getCoordinateDim() cell = cell.reconstruct(geometric_dimension=geometric_dim) if not topology.topology_dm.getCoordinatesLocalized(): element = finat.ufl.VectorElement("Lagrange", cell, 1) else: element = finat.ufl.VectorElement("DQ" if cell in [ufl.quadrilateral, ufl.hexahedron] else "DG", cell, 1, variant="equispaced") # Create mesh object mesh = MeshGeometry.__new__(MeshGeometry, element, topology.comm) mesh._init_topology(topology) mesh.name = name mesh._tolerance = tolerance return mesh def make_vom_from_vom_topology(topology, name, tolerance=0.5): """Make `VertexOnlyMesh` from a mesh topology. Parameters ---------- topology : VertexOnlyMeshTopology The `VertexOnlyMeshTopology`. name : str The name of the mesh. tolerance : numbers.Number The tolerance; see `Mesh`. Returns ------- MeshGeometry The mesh. """ import firedrake.functionspaceimpl as functionspaceimpl import firedrake.functionspace as functionspace import firedrake.function as function gdim = topology.topology_dm.getCoordinateDim() tcell = topology.ufl_cell() cell = tcell.reconstruct(geometric_dimension=gdim) element = finat.ufl.VectorElement("DG", cell, 0) vmesh = MeshGeometry.__new__(MeshGeometry, element, topology.comm) vmesh._init_topology(topology) # Save vertex reference coordinate (within reference cell) in function parent_tdim = topology._parent_mesh.ufl_cell().topological_dimension() if parent_tdim > 0: reference_coordinates_fs = functionspace.VectorFunctionSpace(topology, "DG", 0, dim=parent_tdim) reference_coordinates_data = dmcommon.reordered_coords(topology.topology_dm, reference_coordinates_fs.dm.getDefaultSection(), (topology.num_vertices(), parent_tdim), reference_coord=True) reference_coordinates = function.CoordinatelessFunction(reference_coordinates_fs, val=reference_coordinates_data, name=_generate_default_mesh_reference_coordinates_name(name)) refCoordV = functionspaceimpl.WithGeometry.create(reference_coordinates_fs, vmesh) vmesh.reference_coordinates = function.Function(refCoordV, val=reference_coordinates) else: # We can't do this in 0D so leave it undefined. vmesh.reference_coordinates = None vmesh.name = name vmesh._tolerance = tolerance return vmesh
[docs] @PETSc.Log.EventDecorator("CreateMesh") def Mesh(meshfile, **kwargs): """Construct a mesh object. Meshes may either be created by reading from a mesh file, or by providing a PETSc DMPlex object defining the mesh topology. :param meshfile: the mesh file name, a DMPlex object or a Netgen mesh object defining mesh topology. See below for details on supported mesh formats. :param name: optional name of the mesh object. :param dim: optional specification of the geometric dimension of the mesh (ignored if not reading from mesh file). If not supplied the geometric dimension is deduced from the topological dimension of entities in the mesh. :param reorder: optional flag indicating whether to reorder meshes for better cache locality. If not supplied the default value in ``parameters["reorder_meshes"]`` is used. :param distribution_parameters: an optional dictionary of options for parallel mesh distribution. Supported keys are: - ``"partition"``: which may take the value ``None`` (use the default choice), ``False`` (do not) ``True`` (do), or a 2-tuple that specifies a partitioning of the cells (only really useful for debugging). - ``"partitioner_type"``: which may take ``"chaco"``, ``"ptscotch"``, ``"parmetis"``, or ``"shell"``. - ``"overlap_type"``: a 2-tuple indicating how to grow the mesh overlap. The first entry should be a :class:`DistributedMeshOverlapType` instance, the second the number of levels of overlap. :param distribution_name: the name of parallel distribution used when checkpointing; if not given, the name is automatically generated. :param permutation_name: the name of entity permutation (reordering) used when checkpointing; if not given, the name is automatically generated. :param comm: the communicator to use when creating the mesh. If not supplied, then the mesh will be created on COMM_WORLD. If ``meshfile`` is a DMPlex object then must be indentical to or congruent with the DMPlex communicator. :param tolerance: The relative tolerance (i.e. as defined on the reference cell) for the distance a point can be from a cell and still be considered to be in the cell. Defaults to 0.5. Increase this if point at mesh boundaries (either rank local or global) are reported as being outside the mesh, for example when creating a :class:`VertexOnlyMesh`. Note that this tolerance uses an L1 distance (aka 'manhattan', 'taxicab' or rectilinear distance) so will scale with the dimension of the mesh. :param netgen_flags: The dictionary of flags to be passed to ngsPETSc. When the mesh is read from a file the following mesh formats are supported (determined, case insensitively, from the filename extension): * GMSH: with extension `.msh` * Exodus: with extension `.e`, `.exo` * CGNS: with extension `.cgns` * Triangle: with extension `.node` * HDF5: with extension `.h5`, `.hdf5` (Can only load HDF5 files created by :meth:`~.CheckpointFile.save_mesh` method.) .. note:: When the mesh is created directly from a DMPlex object or a Netgen mesh object, the ``dim`` parameter is ignored (the DMPlex already knows its geometric and topological dimensions). """ import firedrake.function as function user_comm = kwargs.get("comm", COMM_WORLD) name = kwargs.get("name", DEFAULT_MESH_NAME) reorder = kwargs.get("reorder", None) if reorder is None: reorder = parameters["reorder_meshes"] distribution_parameters = kwargs.get("distribution_parameters", None) if distribution_parameters is None: distribution_parameters = {} if isinstance(meshfile, str) and \ any(meshfile.lower().endswith(ext) for ext in ['.h5', '.hdf5']): from firedrake.output import CheckpointFile with CheckpointFile(meshfile, 'r', comm=user_comm) as afile: return afile.load_mesh(name=name, reorder=reorder, distribution_parameters=distribution_parameters) elif isinstance(meshfile, function.Function): coordinates = meshfile.topological elif isinstance(meshfile, function.CoordinatelessFunction): coordinates = meshfile else: coordinates = None if coordinates is not None: return make_mesh_from_coordinates(coordinates, name) tolerance = kwargs.get("tolerance", 0.5) utils._init() # We don't need to worry about using a user comm in these cases as # they all immediately call a petsc4py which in turn uses a PETSc # internal comm geometric_dim = kwargs.get("dim", None) if isinstance(meshfile, PETSc.DMPlex): plex = meshfile if MPI.Comm.Compare(user_comm, plex.comm.tompi4py()) not in {MPI.CONGRUENT, MPI.IDENT}: raise ValueError("Communicator used to create `plex` must be at least congruent to the communicator used to create the mesh") elif netgen and isinstance(meshfile, netgen.libngpy._meshing.Mesh): try: from ngsPETSc import FiredrakeMesh except ImportError: raise ImportError("Unable to import ngsPETSc. Please ensure that ngsolve is installed and available to Firedrake.") netgen_flags = kwargs.get("netgen_flags", {"quad": False, "transform": None, "purify_to_tets": False}) netgen_firedrake_mesh = FiredrakeMesh(meshfile, netgen_flags, user_comm) plex = netgen_firedrake_mesh.meshMap.petscPlex else: basename, ext = os.path.splitext(meshfile) if ext.lower() in ['.e', '.exo']: plex = _from_exodus(meshfile, user_comm) elif ext.lower() == '.cgns': plex = _from_cgns(meshfile, user_comm) elif ext.lower() == '.msh': if geometric_dim is not None: opts = {"dm_plex_gmsh_spacedim": geometric_dim} else: opts = {} opts = OptionsManager(opts, "") with opts.inserted_options(): plex = _from_gmsh(meshfile, user_comm) elif ext.lower() == '.node': plex = _from_triangle(meshfile, geometric_dim, user_comm) else: raise RuntimeError("Mesh file %s has unknown format '%s'." % (meshfile, ext[1:])) plex.setName(_generate_default_mesh_topology_name(name)) # Create mesh topology topology = MeshTopology(plex, name=plex.getName(), reorder=reorder, distribution_parameters=distribution_parameters, distribution_name=kwargs.get("distribution_name"), permutation_name=kwargs.get("permutation_name"), comm=user_comm) mesh = make_mesh_from_mesh_topology(topology, name) if netgen and isinstance(meshfile, netgen.libngpy._meshing.Mesh): netgen_firedrake_mesh.createFromTopology(topology, name=plex.getName(), comm=user_comm) mesh = netgen_firedrake_mesh.firedrakeMesh mesh._tolerance = tolerance return mesh
[docs] @PETSc.Log.EventDecorator("CreateExtMesh") def ExtrudedMesh(mesh, layers, layer_height=None, extrusion_type='uniform', periodic=False, kernel=None, gdim=None, name=None, tolerance=0.5): """Build an extruded mesh from an input mesh :arg mesh: the unstructured base mesh :arg layers: number of extruded cell layers in the "vertical" direction. One may also pass an array of shape (cells, 2) to specify a variable number of layers. In this case, each entry is a pair ``[a, b]`` where ``a`` indicates the starting cell layer of the column and ``b`` the number of cell layers in that column. :arg layer_height: the layer height. A scalar value will result in evenly-spaced layers, whereas an array of values will vary the layer height through the extrusion. If this is omitted, the value defaults to 1/layers (i.e. the extruded mesh has total height 1.0) unless a custom kernel is used. Must be provided if using a variable number of layers. :arg extrusion_type: the algorithm to employ to calculate the extruded coordinates. One of "uniform", "radial", "radial_hedgehog" or "custom". See below. :arg periodic: the flag for periodic extrusion; if True, only constant layer extrusion is allowed. Can be used with any "extrusion_type" to make annulus, torus, etc. :arg kernel: a ``pyop2.Kernel`` to produce coordinates for the extruded mesh. See :func:`~.make_extruded_coords` for more details. :arg gdim: number of spatial dimensions of the resulting mesh (this is only used if a custom kernel is provided) :arg name: optional name for the extruded mesh. :kwarg tolerance: The relative tolerance (i.e. as defined on the reference cell) for the distance a point can be from a cell and still be considered to be in the cell. Note that this tolerance uses an L1 distance (aka 'manhattan', 'taxicab' or rectilinear distance) so will scale with the dimension of the mesh. The various values of ``extrusion_type`` have the following meanings: ``"uniform"`` the extruded mesh has an extra spatial dimension compared to the base mesh. The layers exist in this dimension only. ``"radial"`` the extruded mesh has the same number of spatial dimensions as the base mesh; the cells are radially extruded outwards from the origin. This requires the base mesh to have topological dimension strictly smaller than geometric dimension. ``"radial_hedgehog"`` similar to `radial`, but the cells are extruded in the direction of the outward-pointing cell normal (this produces a P1dgxP1 coordinate field). In this case, a radially extruded coordinate field (generated with ``extrusion_type="radial"``) is available in the ``radial_coordinates`` attribute. ``"custom"`` use a custom kernel to generate the extruded coordinates For more details see the :doc:`manual section on extruded meshes <extruded-meshes>`. """ import firedrake.functionspace as functionspace import firedrake.function as function if name is not None and name == mesh.name: raise ValueError("Extruded mesh and base mesh can not have the same name") name = name if name is not None else mesh.name + "_extruded" mesh.init() layers = np.asarray(layers, dtype=IntType) if layers.shape: if periodic: raise ValueError("Must provide constant layer for periodic extrusion") if layers.shape != (mesh.cell_set.total_size, 2): raise ValueError("Must provide single layer number or array of shape (%d, 2), not %s", mesh.cell_set.total_size, layers.shape) if layer_height is None: raise ValueError("Must provide layer height for variable layers") # variable-height layers need to be present for the maximum number # of extruded layers num_layers = layers.sum(axis=1).max() if mesh.cell_set.total_size else 0 num_layers = mesh._comm.allreduce(num_layers, op=MPI.MAX) # Convert to internal representation layers[:, 1] += 1 + layers[:, 0] else: if layer_height is None: # Default to unit layer_height = 1 / layers num_layers = layers # All internal logic works with layers of base mesh (not layers of cells) layers = layers + 1 try: assert num_layers == len(layer_height) except TypeError: # layer_height is a scalar; equi-distant layers are fine pass topology = ExtrudedMeshTopology(mesh.topology, layers, periodic=periodic) if extrusion_type == "uniform": pass elif extrusion_type in ("radial", "radial_hedgehog"): # do not allow radial extrusion if tdim = gdim if mesh.ufl_cell().geometric_dimension() == mesh.ufl_cell().topological_dimension(): raise RuntimeError("Cannot radially-extrude a mesh with equal geometric and topological dimension") else: # check for kernel if kernel is None: raise RuntimeError("If the custom extrusion_type is used, a kernel must be provided") # otherwise, use the gdim that was passed in if gdim is None: raise RuntimeError("The geometric dimension of the mesh must be specified if a custom extrusion kernel is used") helement = mesh._coordinates.ufl_element().sub_elements[0] if extrusion_type == 'radial_hedgehog': helement = helement.reconstruct(family="DG", variant="equispaced") if periodic: velement = finat.ufl.FiniteElement("DP", ufl.interval, 1, variant="equispaced") else: velement = finat.ufl.FiniteElement("Lagrange", ufl.interval, 1) element = finat.ufl.TensorProductElement(helement, velement) if gdim is None: gdim = mesh.ufl_cell().geometric_dimension() + (extrusion_type == "uniform") coordinates_fs = functionspace.VectorFunctionSpace(topology, element, dim=gdim) coordinates = function.CoordinatelessFunction(coordinates_fs, name=_generate_default_mesh_coordinates_name(name)) eutils.make_extruded_coords(topology, mesh._coordinates, coordinates, layer_height, extrusion_type=extrusion_type, kernel=kernel) self = make_mesh_from_coordinates(coordinates, name) self._base_mesh = mesh if extrusion_type == "radial_hedgehog": helement = mesh._coordinates.ufl_element().sub_elements[0].reconstruct(family="CG") element = finat.ufl.TensorProductElement(helement, velement) fs = functionspace.VectorFunctionSpace(self, element, dim=gdim) self.radial_coordinates = function.Function(fs, name=name + "_radial_coordinates") eutils.make_extruded_coords(topology, mesh._coordinates, self.radial_coordinates, layer_height, extrusion_type="radial", kernel=kernel) self._tolerance = tolerance return self
class MissingPointsBehaviour(enum.Enum): IGNORE = None ERROR = "error" WARN = "warn"
[docs] class VertexOnlyMeshMissingPointsError(Exception): """Exception raised when 1 or more points are not found by a :func:`~.VertexOnlyMesh` in its parent mesh. Attributes ---------- n_missing_points : int The number of points which were not found in the parent mesh. """ def __init__(self, n_missing_points): self.n_missing_points = n_missing_points def __str__(self): return ( f"{self.n_missing_points} vertices are outside the mesh and have " "been removed from the VertexOnlyMesh." )
[docs] @PETSc.Log.EventDecorator() def VertexOnlyMesh(mesh, vertexcoords, reorder=None, missing_points_behaviour='error', tolerance=None, redundant=True, name=None): """ Create a vertex only mesh, immersed in a given mesh, with vertices defined by a list of coordinates. :arg mesh: The unstructured mesh in which to immerse the vertex only mesh. :arg vertexcoords: A list of coordinate tuples which defines the vertices. :kwarg reorder: optional flag indicating whether to reorder meshes for better cache locality. If not supplied the default value in ``parameters["reorder_meshes"]`` is used. :kwarg missing_points_behaviour: optional string argument for what to do when vertices which are outside of the mesh are discarded. If ``'warn'``, will print a warning. If ``'error'`` will raise a :class:`~.VertexOnlyMeshMissingPointsError`. :kwarg tolerance: The relative tolerance (i.e. as defined on the reference cell) for the distance a point can be from a mesh cell and still be considered to be in the cell. Note that this tolerance uses an L1 distance (aka 'manhattan', 'taxicab' or rectilinear distance) so will scale with the dimension of the mesh. The default is the parent mesh's ``tolerance`` property. Changing this from default will cause the parent mesh's spatial index to be rebuilt which can take some time. :kwarg redundant: If True, the mesh will be built using just the vertices which are specified on rank 0. If False, the mesh will be built using the vertices specified by each rank. Care must be taken when using ``redundant = False``: see the note below for more information. :kwarg name: Optional name for the new ``VertexOnlyMesh``. If none is specified a name will be generated from the parent mesh name. .. note:: The vertex only mesh uses the same communicator as the input ``mesh``. .. note:: Extruded meshes with variable extrusion layers are not yet supported. See note below about ``VertexOnlyMesh`` as input. .. note:: When running in parallel with ``redundant = False``, ``vertexcoords`` will redistribute to the mesh partition where they are located. This means that if rank A has ``vertexcoords`` {X} that are not found in the mesh cells owned by rank A but are found in the mesh cells owned by rank B, then they will be moved to rank B. .. note:: If the same coordinates are supplied more than once, they are always assumed to be a new vertex. """ from firedrake_citations import Citations Citations().register("nixonhill2023consistent") if tolerance is None: tolerance = mesh.tolerance else: mesh.tolerance = tolerance mesh.init() vertexcoords = np.asarray(vertexcoords, dtype=RealType) if reorder is None: reorder = parameters["reorder_meshes"] gdim = mesh.geometric_dimension() _, pdim = vertexcoords.shape if not np.isclose(np.sum(abs(vertexcoords.imag)), 0): raise ValueError("Point coordinates must have zero imaginary part") # Bendy meshes require a smarter bounding box algorithm at partition and # (especially) cell level. Projecting coordinates to Bernstein may be # sufficient. if np.any(np.asarray(mesh.coordinates.function_space().ufl_element().degree()) > 1): raise NotImplementedError("Only straight edged meshes are supported") # Currently we take responsibility for locating the mesh cells in which the # vertices lie. # # In the future we hope to update the coordinates field correctly so that # the DMSwarm PIC can immerse itself in the DMPlex. We can also hopefully # provide a callback for PETSc to use to find the parent cell id. We would # add `DMLocatePoints` as an `op` to `DMShell` types and do # `DMSwarmSetCellDM(yourdmshell)` which has `DMLocatePoints_Shell` # implemented. Whether one or both of these is needed is unclear. if pdim != gdim: raise ValueError(f"Mesh geometric dimension {gdim} must match point list dimension {pdim}") swarm, input_ordering_swarm, n_missing_points = _pic_swarm_in_mesh( mesh, vertexcoords, tolerance=tolerance, redundant=redundant, exclude_halos=False ) missing_points_behaviour = MissingPointsBehaviour(missing_points_behaviour) if missing_points_behaviour != MissingPointsBehaviour.IGNORE: if n_missing_points: error = VertexOnlyMeshMissingPointsError(n_missing_points) if missing_points_behaviour == MissingPointsBehaviour.ERROR: raise error elif missing_points_behaviour == MissingPointsBehaviour.WARN: from warnings import warn warn(str(error)) else: raise ValueError("missing_points_behaviour must be IGNORE, ERROR or WARN") name = name if name is not None else mesh.name + "_immersed_vom" swarm.setName(_generate_default_mesh_topology_name(name)) input_ordering_swarm.setName(_generate_default_mesh_topology_name(name) + "_input_ordering") topology = VertexOnlyMeshTopology( swarm, mesh.topology, name=swarm.getName(), reorder=reorder, input_ordering_swarm=input_ordering_swarm, ) vmesh_out = make_vom_from_vom_topology(topology, name, tolerance) vmesh_out._parent_mesh = mesh vmesh_out.init() return vmesh_out
class FiredrakeDMSwarm(PETSc.DMSwarm): """A DMSwarm with a saved list of added fields""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._fields = None self._default_fields = None self._default_extra_fields = None self._other_fields = None @property def fields(self): return self._fields @fields.setter def fields(self, fields): if self._fields: raise ValueError("Fields have already been set") self._fields = fields @property def default_fields(self): return self._default_fields @default_fields.setter def default_fields(self, fields): if self._default_fields: raise ValueError("Default fields have already been set") self._default_fields = fields @property def default_extra_fields(self): return self._default_extra_fields @default_extra_fields.setter def default_extra_fields(self, fields): if self._default_extra_fields: raise ValueError("Default extra fields have already been set") self._default_extra_fields = fields @property def other_fields(self): return self._other_fields @other_fields.setter def other_fields(self, fields): if self._other_fields: raise ValueError("Other fields have already been set") self._other_fields = fields def _pic_swarm_in_mesh( parent_mesh, coords, fields=None, tolerance=None, redundant=True, exclude_halos=True, ): """Create a Particle In Cell (PIC) DMSwarm immersed in a Mesh This should only by used for meshes with straight edges. If not, the particles may be placed in the wrong cells. :arg parent_mesh: the :class:`Mesh` within with the DMSwarm should be immersed. :arg coords: an ``ndarray`` of (npoints, coordsdim) shape. :kwarg fields: An optional list of named data which can be stored for each point in the DMSwarm. The format should be:: [(fieldname1, blocksize1, dtype1), ..., (fieldnameN, blocksizeN, dtypeN)] For example, the swarm coordinates themselves are stored in a field named ``DMSwarmPIC_coor`` which, were it not created automatically, would be initialised with ``fields = [("DMSwarmPIC_coor", coordsdim, RealType)]``. All fields must have the same number of points. For more information see `the DMSWARM API reference <https://www.mcs.anl.gov/petsc/petsc-current/manualpages/DMSWARM/DMSWARM.html>_. :kwarg tolerance: The relative tolerance (i.e. as defined on the reference cell) for the distance a point can be from a cell and still be considered to be in the cell. Note that this tolerance uses an L1 distance (aka 'manhattan', 'taxicab' or rectilinear distance) so will scale with the dimension of the mesh. The default is the parent mesh's ``tolerance`` property. Changing this from default will cause the parent mesh's spatial index to be rebuilt which can take some time. :kwarg redundant: If True, the DMSwarm will be created using only the points specified on MPI rank 0. :kwarg exclude_halos: If True, the DMSwarm will not contain any points in the mesh halos. If False, it will but the global index of the points in the halos will match a global index of a point which is not in the halo. :returns: (swarm, input_ordering_swarm, n_missing_points) - swarm: the immersed DMSwarm - input_ordering_swarm: a DMSwarm with points in the same order and with the same rank decomposition as the supplied ``coords`` argument. This includes any points which are not found in the parent mesh! Note that if ``redundant=True``, all points in the generated DMSwarm will be found on rank 0 since that was where they were taken from. - n_missing_points: the number of points in the supplied ``coords`` argument which were not found in the parent mesh. .. note:: The created DMSwarm uses the communicator of the input Mesh. .. note:: In complex mode the "DMSwarmPIC_coor" field is still saved as a real number unlike the coordinates of a DMPlex which become complex (though usually with zeroed imaginary parts). .. note:: When running in parallel with ``redundant = False``, ``coords`` will redistribute to the mesh partition where they are located. This means that if rank A has ``coords`` {X} that are not found in the mesh cells owned by rank A but are found in the mesh cells owned by rank B, **and rank B has not been supplied with those**, then they will be moved to rank B. .. note:: If the same coordinates are supplied more than once, they are always assumed to be a new vertex. .. note:: Three DMSwarm fields are created automatically here: #. ``parentcellnum`` which contains the firedrake cell number of the immersed vertex and #. ``refcoord`` which contains the reference coordinate of the immersed vertex in the parent mesh cell. #. ``globalindex`` which contains a unique ID for each DMSwarm point - here this is the index into the ``coords`` array if ``redundant`` is ``True``, otherwise it's an index in rank order, so if rank 0 has 10 points, rank 1 has 20 points, and rank 3 has 5 points, then rank 0's points will be numbered 0-9, rank 1's points will be numbered 10-29, and rank 3's points will be numbered 30-34. Note that this ought to be ``DMSwarmField_pid`` but a bug in petsc4py means that this field cannot be set. #. ``inputrank`` which contains the MPI rank at which the ``coords`` argument was specified. For ``redundant=True`` this is always 0. #. ``inputindex`` which contains the index of the point in the originally supplied ``coords`` array after it has been redistributed to the correct rank. For ``redundant=True`` this is always the same as ``globalindex`` since we only use the points on rank 0. If the parent mesh is extruded, two more fields are created: #. ``parentcellbasenum`` which contains the firedrake cell number of the base cell of the immersed vertex and #. ``parentcellextrusionheight`` which contains the extrusion height of the immersed vertex in the parent mesh cell. Another three are required for proper functioning of the DMSwarm: #. ``DMSwarmPIC_coor`` which contains the coordinates of the point. #. ``DMSwarm_cellid`` the DMPlex cell within which the DMSwarm point is located. #. ``DMSwarm_rank``: the MPI rank which owns the DMSwarm point. .. note:: All PIC DMSwarm have an associated "Cell DM", if one wishes to interact directly with PETSc's DMSwarm API. For the ``swarm`` output, this is the parent mesh's topology DM (in most cases a DMPlex). For the ``input_ordering_swarm`` output, this is the ``swarm`` itself. """ if tolerance is None: tolerance = parent_mesh.tolerance else: parent_mesh.tolerance = tolerance # Check coords coords = np.asarray(coords, dtype=RealType) plex = parent_mesh.topology.topology_dm tdim = parent_mesh.topological_dimension() gdim = parent_mesh.geometric_dimension() ( coords_local, global_idxs_local, reference_coords_local, parent_cell_nums_local, owned_ranks_local, input_ranks_local, input_coords_idxs_local, missing_global_idxs, ) = _parent_mesh_embedding( parent_mesh, coords, tolerance, redundant, exclude_halos, remove_missing_points=False, ) visible_idxs = parent_cell_nums_local != -1 if parent_mesh.extruded: # need to store the base parent cell number and the height to be able # to map point coordinates back to the parent mesh if parent_mesh.variable_layers: raise NotImplementedError( "Cannot create a DMSwarm in an ExtrudedMesh with variable layers." ) base_parent_cell_nums, extrusion_heights = _parent_extrusion_numbering( parent_cell_nums_local, parent_mesh.layers ) # mesh.topology.cell_closure[:, -1] maps Firedrake cell numbers to plex # numbers. plex_parent_cell_nums = parent_mesh.topology.cell_closure[ base_parent_cell_nums, -1 ] base_parent_cell_nums_visible = base_parent_cell_nums[visible_idxs] extrusion_heights_visible = extrusion_heights[visible_idxs] else: plex_parent_cell_nums = parent_mesh.topology.cell_closure[ parent_cell_nums_local, -1 ] base_parent_cell_nums_visible = None extrusion_heights_visible = None n_missing_points = len(missing_global_idxs) # Exclude the invisible points at this stage swarm = _dmswarm_create( fields, parent_mesh.comm, plex, coords_local[visible_idxs], plex_parent_cell_nums[visible_idxs], global_idxs_local[visible_idxs], reference_coords_local[visible_idxs], parent_cell_nums_local[visible_idxs], owned_ranks_local[visible_idxs], input_ranks_local[visible_idxs], input_coords_idxs_local[visible_idxs], base_parent_cell_nums_visible, extrusion_heights_visible, parent_mesh.extruded, tdim, gdim, ) # Note when getting original ordering for extruded meshes we recalculate # the base_parent_cell_nums and extrusion_heights - note this could # be an SF operation if redundant and parent_mesh.comm.rank != 0: original_ordering_swarm_coords = np.empty(shape=(0, coords.shape[1])) else: original_ordering_swarm_coords = coords # Set pointSF # In the below, n merely defines the local size of an array, local_points_reduced, # that works as "broker". The set of indices of local_points_reduced is the target of # inputindex; see _make_input_ordering_sf. All points in local_points are leaves. # Then, local_points[halo_indices] = -1, local_points_reduced.fill(-1), and MPI.MAX ensure that local_points_reduced has # the swarm local point numbers of the owning ranks after reduce. local_points_reduced[j] = -1 # if j corresponds to a missing point. Then, broadcast updates # local_points[halo_indices] (it also updates local_points[~halo_indices]`, not changing any values there). # If some index of local_points_reduced corresponds to a missing point, local_points_reduced[index] is not updated # when we reduce and it does not update any leaf data, i.e., local_points, when we bcast. owners = swarm.getField("DMSwarm_rank") halo_indices, = np.where(owners != parent_mesh.comm.rank) halo_indices = halo_indices.astype(IntType) n = coords.shape[0] m = owners.shape[0] _swarm_input_ordering_sf = VertexOnlyMeshTopology._make_input_ordering_sf(swarm, n, None) # sf: swarm local point <- (inputrank, inputindex) local_points_reduced = np.empty(n, dtype=utils.IntType) local_points_reduced.fill(-1) local_points = np.arange(m, dtype=utils.IntType) # swarm local point numbers local_points[halo_indices] = -1 unit = MPI._typedict[np.dtype(utils.IntType).char] _swarm_input_ordering_sf.reduceBegin(unit, local_points, local_points_reduced, MPI.MAX) _swarm_input_ordering_sf.reduceEnd(unit, local_points, local_points_reduced, MPI.MAX) _swarm_input_ordering_sf.bcastBegin(unit, local_points_reduced, local_points, MPI.REPLACE) _swarm_input_ordering_sf.bcastEnd(unit, local_points_reduced, local_points, MPI.REPLACE) if np.any(local_points < 0): raise RuntimeError("Unable to make swarm pointSF due to inconsistent data") # Interleave each rank and index into (rank, index) pairs for use as remote # in the SF remote_ranks_and_idxs = np.empty(2 * len(halo_indices), dtype=IntType) remote_ranks_and_idxs[0::2] = owners[halo_indices] remote_ranks_and_idxs[1::2] = local_points[halo_indices] swarm.restoreField("DMSwarm_rank") sf = swarm.getPointSF() sf.setGraph(m, halo_indices, remote_ranks_and_idxs) swarm.setPointSF(sf) original_ordering_swarm = _swarm_original_ordering_preserve( parent_mesh.comm, swarm, original_ordering_swarm_coords, plex_parent_cell_nums, global_idxs_local, reference_coords_local, parent_cell_nums_local, owned_ranks_local, input_ranks_local, # This is just an array of 0s for redundant, and comm.rank otherwise. But I need to pass it in to get the correct ordering input_coords_idxs_local, parent_mesh.extruded, parent_mesh.layers, ) # no halos here sf = original_ordering_swarm.getPointSF() nroots = original_ordering_swarm.getLocalSize() sf.setGraph(nroots, None, []) original_ordering_swarm.setPointSF(sf) return swarm, original_ordering_swarm, n_missing_points def _dmswarm_create( fields, comm, plex, coords, plex_parent_cell_nums, coords_idxs, reference_coords, parent_cell_nums, ranks, input_ranks, input_coords_idxs, base_parent_cell_nums, extrusion_heights, extruded, tdim, gdim, ): """ Create a PIC DMSwarm (or DMSwarm that looks like it's a PIC DMSwarm) using the given data. Parameters ---------- fields : list of tuples List of tuples of the form (name, number of components, type) for any additional fields to be added to the DMSwarm. The default fields are automatically added and do not need to be specified here. Can be an empty list if no additional fields are required. comm : MPI communicator The MPI communicator to use when creating the DMSwarm. plex : PETSc DM The DM to set as the "CellDM" of the DMSwarm - i.e. the DMPlex or DMSwarm of the parent mesh. coords : numpy array of RealType with shape (npoints, gdim) The coordinates of the particles in the DMSwarm. plex_parent_cell_nums : numpy array of IntType with shape (npoints,) Array to be used as the "parentcellnum" field of the DMSwarm. coords_idxs : numpy array of IntType with shape (npoints,) Array to be used as the "globalindex" field of the DMSwarm. reference_coords : numpy array of RealType with shape (npoints, tdim) Array to be used as the "refcoord" field of the DMSwarm. parent_cell_nums : numpy array of IntType with shape (npoints,) Array to be used as the "parentcellnum" field of the DMSwarm. ranks : numpy array of IntType with shape (npoints,) Array to be used as the "DMSwarm_rank" field of the DMSwarm. input_ranks : numpy array of IntType with shape (npoints,) Array to be used as the "inputrank" field of the DMSwarm. input_coords_idxs : numpy array of IntType with shape (npoints,) Array to be used as the "inputindex" field of the DMSwarm. base_parent_cell_nums : numpy array of IntType with shape (npoints,) (or None) Optional array to be used as the "parentcellbasenum" field of the DMSwarm. Must be provided if extruded=True. extrusion_heights : numpy array of IntType with shape (npoints,) (or None) Optional array to be used as the "parentcellextrusionheight" field of the DMSwarm. Must be provided if extruded=True. extruded : bool Whether the parent mesh is extruded. tdim : int The topological dimension of the parent mesh. gdim : int The geometric dimension of the parent mesh. Returns ------- swarm : PETSc DMSwarm The created DMSwarm. Notes ----- When the `plex` is a DMSwarm, the created DMSwarm isn't actually a PIC DMSwarm, but it has all the associated fields of a PIC DMSwarm. This is because PIC DMSwarms cannot have their "CellDM" set to a DMSwarm, so we fake it! """ # These are created by default for a PIC DMSwarm default_fields = [ ("DMSwarmPIC_coor", gdim, RealType), ("DMSwarm_cellid", 1, IntType), ("DMSwarm_rank", 1, IntType), ] default_extra_fields = [ ("parentcellnum", 1, IntType), ("refcoord", tdim, RealType), ("globalindex", 1, IntType), ("inputrank", 1, IntType), ("inputindex", 1, IntType), ] if extruded: default_extra_fields += [ ("parentcellbasenum", 1, IntType), ("parentcellextrusionheight", 1, IntType), ] other_fields = fields if other_fields is None: other_fields = [] _, coordsdim = coords.shape # Create a DMSWARM swarm = FiredrakeDMSwarm().create(comm=comm) # save the fields on the swarm swarm.fields = default_fields + default_extra_fields + other_fields swarm.default_fields = default_fields swarm.default_extra_fields = default_extra_fields swarm.other_fields = other_fields plexdim = plex.getDimension() if plexdim != tdim or plexdim != gdim: # This is a Firedrake extruded or immersed mesh, so we need to use the # mesh geometric dimension when we create the swarm. In this # case DMSwarmMigate() will not work. swarmdim = gdim else: swarmdim = plexdim # Set swarm DM dimension to match DMPlex dimension # NB: Unlike a DMPlex, this does not correspond to the topological # dimension of a mesh (which would be 0). In all PETSc examples # the dimension of the DMSwarm is set to match that of the # DMPlex used with swarm.setCellDM. As noted above, for an # extruded mesh this will stop DMSwarmMigrate() from working. swarm.setDimension(swarmdim) # Set coordinates dimension swarm.setCoordinateDim(coordsdim) # Link to DMPlex cells information for when swarm.migrate() is used swarm.setCellDM(plex) # Set to Particle In Cell (PIC) type if not isinstance(plex, PETSc.DMSwarm): swarm.setType(PETSc.DMSwarm.Type.PIC) else: # This doesn't work where we embed a DMSwarm in a DMSwarm, instead # we register some default fields manually for name, size, dtype in default_fields: if name == "DMSwarmPIC_coor" or name == "DMSwarm_cellid": swarm.registerField(name, size, dtype=dtype) # Register any fields for name, size, dtype in swarm.default_extra_fields + swarm.other_fields: swarm.registerField(name, size, dtype=dtype) swarm.finalizeFieldRegister() # Note that no new fields can now be associated with the DMSWARM. num_vertices = len(coords) swarm.setLocalSizes(num_vertices, -1) # Add point coordinates. This amounts to our own implementation of # DMSwarmSetPointCoordinates because Firedrake's mesh coordinate model # doesn't always exactly coincide with that of DMPlex: in most cases the # plex_parent_cell_nums (DMSwarm_cellid field) and parent_cell_nums # (parentcellnum field), the latter being the numbering used by firedrake, # refer fundamentally to the same cells. For extruded meshes the DMPlex # dimension is based on the topological dimension of the base mesh. # NOTE ensure that swarm.restoreField is called for each field too! swarm_coords = swarm.getField("DMSwarmPIC_coor").reshape((num_vertices, gdim)) swarm_parent_cell_nums = swarm.getField("DMSwarm_cellid") field_parent_cell_nums = swarm.getField("parentcellnum") field_reference_coords = swarm.getField("refcoord").reshape((num_vertices, tdim)) field_global_index = swarm.getField("globalindex") field_rank = swarm.getField("DMSwarm_rank") field_input_rank = swarm.getField("inputrank") field_input_index = swarm.getField("inputindex") swarm_coords[...] = coords swarm_parent_cell_nums[...] = plex_parent_cell_nums field_parent_cell_nums[...] = parent_cell_nums field_reference_coords[...] = reference_coords field_global_index[...] = coords_idxs field_rank[...] = ranks field_input_rank[...] = input_ranks field_input_index[...] = input_coords_idxs # have to restore fields once accessed to allow access again swarm.restoreField("inputindex") swarm.restoreField("inputrank") swarm.restoreField("DMSwarm_rank") swarm.restoreField("globalindex") swarm.restoreField("refcoord") swarm.restoreField("parentcellnum") swarm.restoreField("DMSwarmPIC_coor") swarm.restoreField("DMSwarm_cellid") if extruded: field_base_parent_cell_nums = swarm.getField("parentcellbasenum") field_extrusion_heights = swarm.getField("parentcellextrusionheight") field_base_parent_cell_nums[...] = base_parent_cell_nums field_extrusion_heights[...] = extrusion_heights swarm.restoreField("parentcellbasenum") swarm.restoreField("parentcellextrusionheight") return swarm def _parent_extrusion_numbering(parent_cell_nums, parent_layers): """ Given a list of Firedrake cell numbers (e.g. from mesh.locate_cell) and number of layers, get the base parent cell numbers and extrusion heights. Parameters ---------- parent_cell_nums : ``np.ndarray`` Firedrake cell numbers (e.g. from mesh.locate_cell) parent_layers : ``int`` Number of layers in the extruded mesh Returns ------- base_parent_cell_nums : ``np.ndarray`` The base parent cell numbers extrusion_heights : ``np.ndarray`` The extrusion heights Notes ----- Only works for meshes without variable layers. """ # Extruded mesh parent_cell_nums goes from bottom to top. So for # mx = ExtrudedMesh(UnitIntervalMesh(2), 3) we have # mx.layers = 4 # and # -------------------layer 4------------------- # | parent_cell_num = 2 | parent_cell_num = 5 | # | extrusion_height = 2 | extrusion_height = 2 | # -------------------layer 3------------------- # | parent_cell_num = 1 | parent_cell_num = 4 | # | extrusion_height = 1 | extrusion_height = 1 | # -------------------layer 2------------------- # | parent_cell_num = 0 | parent_cell_num = 3 | # | extrusion_height = 0 | extrusion_height = 0 | # -------------------layer 1------------------- # base_cell_num = 0 base_cell_num = 1 # The base_cell_num is the cell number in the base mesh which, in this # case, is a UnitIntervalMesh with two cells. base_parent_cell_nums = parent_cell_nums // (parent_layers - 1) extrusion_heights = parent_cell_nums % (parent_layers - 1) return base_parent_cell_nums, extrusion_heights def _mpi_array_lexicographic_min(x, y, datatype): """MPI operator for lexicographic minimum of arrays. This compares two arrays of shape (N, 2) lexicographically, i.e. first comparing the two arrays by their first column, returning the element-wise minimum, with ties broken by comparing the second column element wise. Parameters ---------- x : ``np.ndarray`` The first array to compare of shape (N, 2). y : ``np.ndarray`` The second array to compare of shape (N, 2). datatype : ``MPI.Datatype`` The datatype of the arrays. Returns ------- ``np.ndarray`` The lexicographically lowest array of shape (N, 2). """ # Check the first column min_idxs = np.where(x[:, 0] < y[:, 0])[0] result = np.copy(y) result[min_idxs, :] = x[min_idxs, :] # if necessary, check the second column eq_idxs = np.where(x[:, 0] == y[:, 0])[0] if len(eq_idxs): # We only check where we have equal values to avoid unnecessary work min_idxs = np.where(x[eq_idxs, 1] < y[eq_idxs, 1])[0] result[eq_idxs[min_idxs], :] = x[eq_idxs[min_idxs], :] return result array_lexicographic_mpi_op = MPI.Op.Create(_mpi_array_lexicographic_min, commute=True) def _parent_mesh_embedding( parent_mesh, coords, tolerance, redundant, exclude_halos, remove_missing_points ): """Find the parent mesh cells containing the given coordinates. Parameters ---------- parent_mesh : ``Mesh`` The parent mesh to embed in. coords : ``np.ndarray`` The coordinates to embed of (npoints, coordsdim) shape. tolerance : ``float`` The relative tolerance (i.e. as defined on the reference cell) for the distance a point can be from a cell and still be considered to be in the cell. Note that this tolerance uses an L1 distance (aka 'manhattan', 'taxicab' or rectilinear distance) so will scale with the dimension of the mesh. The default is the parent mesh's ``tolerance`` property. Changing this from default will cause the parent mesh's spatial index to be rebuilt which can take some time. redundant : ``bool`` If True, the embedding will be done using only the points specified on MPI rank 0. exclude_halos : ``bool`` If True, the embedding will be done using only the points specified on the locally owned mesh partition. remove_missing_points : ``bool`` If True, any points which are not found in the mesh will be removed from the output arrays. If False, they will be kept on the MPI rank which owns them but will be marked as not being not found in the mesh by setting their associated cell numbers to -1 and their reference coordinates to NaNs. This does not effect the behaviour of ``missing_global_idxs``. Returns ------- coords_embedded : ``np.ndarray`` The coordinates of the points that were embedded on this rank. If ``remove_missing_points`` is False then this will include points that were specified on this rank but not found in the mesh. global_idxs : ``np.ndarray`` The global indices of the points on this rank. reference_coords : ``np.ndarray`` The reference coordinates of the points that were embedded as given by the local mesh partition. If ``remove_missing_points`` is False then the missing point reference coordinates will be NaNs. parent_cell_nums : ``np.ndarray`` The parent cell indices (as given by ``locate_cell``) of the global coordinates that were embedded in the local mesh partition. If ``remove_missing_points`` is False then the missing point numbers will be -1. owned_ranks : ``np.ndarray`` The MPI rank of the process that owns the parent cell of each point. By "owns" we mean the mesh partition where the parent cell is not in the halo. If a point is not found in the mesh then the rank is ``parent_mesh.comm.size + 1``. input_ranks : ``np.ndarray`` The MPI rank of the process that specified the input ``coords``. input_coords_idx : ``np.ndarray`` The indices of the points in the input ``coords`` array that were embedded. If ``remove_missing_points`` is False then this will include points that were specified on this rank but not found in the mesh. missing_global_idxs : ``np.ndarray`` The indices of the points in the input coords array that were not embedded on any rank. .. note:: Where we have ``exclude_halos == True`` and ``remove_missing_points == False``, and we run in parallel, the points are ordered such that the halo points follow the owned points. Any missing points will be at the end of the array. This is to ensure that dat views work as expected - in general it is always assumed that halo points follow owned points. """ if isinstance(parent_mesh.topology, VertexOnlyMeshTopology): raise NotImplementedError( "VertexOnlyMeshes don't have a working locate_cells_ref_coords_and_dists method" ) import firedrake.functionspace as functionspace import firedrake.constant as constant import firedrake.interpolation as interpolation import firedrake.assemble as assemble # In parallel, we need to make sure we know which point is which and save # it. if redundant: # rank 0 broadcasts coords to all ranks coords_local = parent_mesh._comm.bcast(coords, root=0) ncoords_local = coords_local.shape[0] coords_global = coords_local ncoords_global = coords_global.shape[0] global_idxs_global = np.arange(coords_global.shape[0]) input_coords_idxs_local = np.arange(ncoords_local) input_coords_idxs_global = input_coords_idxs_local input_ranks_local = np.zeros(ncoords_local, dtype=int) input_ranks_global = input_ranks_local else: # Here, we have to assume that all points we can see are unique. # We therefore gather all points on all ranks in rank order: if rank 0 # has 10 points, rank 1 has 20 points, and rank 3 has 5 points, then # rank 0's points have global numbering 0-9, rank 1's points have # global numbering 10-29, and rank 3's points have global numbering # 30-34. coords_local = coords ncoords_local = coords.shape[0] ncoords_local_allranks = parent_mesh._comm.allgather(ncoords_local) ncoords_global = sum(ncoords_local_allranks) # The below code looks complicated but it's just an allgather of the # (variable length) coords_local array such that they are concatenated. coords_local_size = np.array(coords_local.size) coords_local_sizes = np.empty(parent_mesh._comm.size, dtype=int) parent_mesh._comm.Allgatherv(coords_local_size, coords_local_sizes) coords_global = np.empty( (ncoords_global, coords.shape[1]), dtype=coords_local.dtype ) parent_mesh._comm.Allgatherv(coords_local, (coords_global, coords_local_sizes)) # # ncoords_local_allranks is in rank order so we can just sum up the # # previous ranks to get the starting index for the global numbering. # # For rank 0 we make use of the fact that sum([]) = 0. # startidx = sum(ncoords_local_allranks[:parent_mesh._comm.rank]) # endidx = startidx + ncoords_local # global_idxs_global = np.arange(startidx, endidx) global_idxs_global = np.arange(coords_global.shape[0]) input_coords_idxs_local = np.arange(ncoords_local) input_coords_idxs_global = np.empty(ncoords_global, dtype=int) parent_mesh._comm.Allgatherv( input_coords_idxs_local, (input_coords_idxs_global, ncoords_local_allranks) ) input_ranks_local = np.full(ncoords_local, parent_mesh._comm.rank, dtype=int) input_ranks_global = np.empty(ncoords_global, dtype=int) parent_mesh._comm.Allgatherv( input_ranks_local, (input_ranks_global, ncoords_local_allranks) ) # Get parent mesh rank ownership information: # Interpolating Constant(parent_mesh.comm.rank) into P0DG cleverly creates # a Function whose dat contains rank ownership information in an ordering # that is accessible using Firedrake's cell numbering. This is because, on # each rank, parent_mesh.comm.rank creates a Constant with the local rank # number, and halo exchange ensures that this information is visible, as # nessesary, to other processes. P0DG = functionspace.FunctionSpace(parent_mesh, "DG", 0) with stop_annotating(): visible_ranks = interpolation.Interpolate( constant.Constant(parent_mesh.comm.rank), P0DG ) visible_ranks = assemble(visible_ranks).dat.data_ro_with_halos.real locally_visible = np.full(ncoords_global, False) # See below for why np.inf is used here. ranks = np.full(ncoords_global, np.inf) ( parent_cell_nums, reference_coords, ref_cell_dists_l1, ) = parent_mesh.locate_cells_ref_coords_and_dists(coords_global, tolerance) assert len(parent_cell_nums) == ncoords_global assert len(reference_coords) == ncoords_global assert len(ref_cell_dists_l1) == ncoords_global if parent_mesh.geometric_dimension() > parent_mesh.topological_dimension(): # The reference coordinates contain an extra unnecessary dimension # which we can safely delete reference_coords = reference_coords[:, : parent_mesh.topological_dimension()] locally_visible[:] = parent_cell_nums != -1 ranks[locally_visible] = visible_ranks[parent_cell_nums[locally_visible]] # see below for why np.inf is used here. ref_cell_dists_l1[~locally_visible] = np.inf # ensure that points which a rank thinks it owns are always chosen in a tie # break by setting the rank to be negative. If multiple ranks think they # own a point then the one with the highest rank will be chosen. on_this_rank = ranks == parent_mesh.comm.rank ranks[on_this_rank] = -parent_mesh.comm.rank ref_cell_dists_l1_and_ranks = np.stack((ref_cell_dists_l1, ranks), axis=1) # In parallel there will regularly be disagreements about which cell owns a # point when those points are close to mesh partition boundaries. # We now have the reference cell l1 distance and ranks being np.inf for any # point which is not locally visible. By collectively taking the minimum # of the reference cell l1 distance, which is tied to the rank via # ref_cell_dists_l1_and_ranks, we both check which cell the coordinate is # closest to and find out which rank owns that cell. # In cases where the reference cell l1 distance is the same for a # particular coordinate, we break the tie by choosing the lowest rank. # This turns out to be a lexicographic row-wise minimum of the # ref_cell_dists_l1_and_ranks array: we minimise the distance first and # break ties by choosing the lowest rank. owned_ref_cell_dists_l1_and_ranks = parent_mesh.comm.allreduce( ref_cell_dists_l1_and_ranks, op=array_lexicographic_mpi_op ) # switch ranks back to positive owned_ref_cell_dists_l1_and_ranks[:, 1] = np.abs( owned_ref_cell_dists_l1_and_ranks[:, 1] ) ref_cell_dists_l1_and_ranks[:, 1] = np.abs(ref_cell_dists_l1_and_ranks[:, 1]) ranks = np.abs(ranks) owned_ref_cell_dists_l1 = owned_ref_cell_dists_l1_and_ranks[:, 0] owned_ranks = owned_ref_cell_dists_l1_and_ranks[:, 1] changed_ref_cell_dists_l1 = owned_ref_cell_dists_l1 != ref_cell_dists_l1 changed_ranks = owned_ranks != ranks # If distance has changed the the point is not in local mesh partition # since some other cell on another rank is closer. locally_visible[changed_ref_cell_dists_l1] = False parent_cell_nums[changed_ref_cell_dists_l1] = -1 # If the rank has changed but the distance hasn't then there was a tie # break and we need to search for the point again, this time disallowing # the previously identified cell: if we match the identified owned_rank AND # the distance is the same then we have found the correct cell. If we # cannot make a match to owned_rank and distance then we can't see the # point. changed_ranks_tied = changed_ranks & ~changed_ref_cell_dists_l1 if any(changed_ranks_tied): cells_ignore_T = np.asarray([np.copy(parent_cell_nums)]) while any(changed_ranks_tied): ( parent_cell_nums[changed_ranks_tied], new_reference_coords, ref_cell_dists_l1[changed_ranks_tied], ) = parent_mesh.locate_cells_ref_coords_and_dists( coords_global[changed_ranks_tied], tolerance, cells_ignore=cells_ignore_T.T[changed_ranks_tied, :], ) # delete extra dimension if necessary if parent_mesh.geometric_dimension() > parent_mesh.topological_dimension(): new_reference_coords = new_reference_coords[:, : parent_mesh.topological_dimension()] reference_coords[changed_ranks_tied, :] = new_reference_coords # remove newly lost points locally_visible[changed_ranks_tied] = ( parent_cell_nums[changed_ranks_tied] != -1 ) changed_ranks_tied &= locally_visible # if new ref_cell_dists_l1 > owned_ref_cell_dists_l1 then we should # disregard the point. locally_visible[changed_ranks_tied] &= ( ref_cell_dists_l1[changed_ranks_tied] <= owned_ref_cell_dists_l1[changed_ranks_tied] ) changed_ranks_tied &= locally_visible # update the identified rank ranks[changed_ranks_tied] = visible_ranks[ parent_cell_nums[changed_ranks_tied] ] # if the rank now matches then we have found the correct cell locally_visible[changed_ranks_tied] &= ( owned_ranks[changed_ranks_tied] == ranks[changed_ranks_tied] ) # remove these rank matches from changed_ranks_tied changed_ranks_tied &= ~locally_visible # add more cells to ignore cells_ignore_T = np.vstack(( cells_ignore_T, parent_cell_nums) ) # Any ranks which are still np.inf are not in the mesh missing_global_idxs = np.where(owned_ranks == np.inf)[0] if not remove_missing_points: missing_coords_idxs_on_rank = np.where( (owned_ranks == np.inf) & (input_ranks_global == parent_mesh.comm.rank) )[0] locally_visible[missing_coords_idxs_on_rank] = True parent_cell_nums[missing_coords_idxs_on_rank] = -1 reference_coords[missing_coords_idxs_on_rank, :] = np.nan owned_ranks[missing_coords_idxs_on_rank] = parent_mesh.comm.size + 1 if exclude_halos and parent_mesh.comm.size > 1: off_rank_coords_idxs = np.where( (owned_ranks != parent_mesh.comm.rank) & (owned_ranks != parent_mesh.comm.size + 1) )[0] locally_visible[off_rank_coords_idxs] = False coords_embedded = np.compress(locally_visible, coords_global, axis=0) global_idxs = np.compress(locally_visible, global_idxs_global, axis=0) reference_coords = np.compress(locally_visible, reference_coords, axis=0) parent_cell_nums = np.compress(locally_visible, parent_cell_nums, axis=0) owned_ranks = np.compress(locally_visible, owned_ranks, axis=0).astype(int) input_ranks = np.compress(locally_visible, input_ranks_global, axis=0) input_coords_idxs = np.compress(locally_visible, input_coords_idxs_global, axis=0) return ( coords_embedded, global_idxs, reference_coords, parent_cell_nums, owned_ranks, input_ranks, input_coords_idxs, missing_global_idxs, ) def _swarm_original_ordering_preserve( comm, swarm, original_ordering_coords_local, plex_parent_cell_nums_local, global_idxs_local, reference_coords_local, parent_cell_nums_local, ranks_local, input_ranks_local, input_idxs_local, extruded, layers, ): """ Create a DMSwarm with the original ordering of the coordinates in a vertex only mesh embedded using ``_parent_mesh_embedding`` whilst preserving the values of all other DMSwarm fields except any added fields. """ ncoords_local = len(reference_coords_local) gdim = original_ordering_coords_local.shape[1] tdim = reference_coords_local.shape[1] # Gather everything except original_ordering_coords_local from all mpi # ranks ncoords_local_allranks = comm.allgather(ncoords_local) ncoords_global = sum(ncoords_local_allranks) parent_cell_nums_global = np.empty( ncoords_global, dtype=parent_cell_nums_local.dtype ) comm.Allgatherv( parent_cell_nums_local, (parent_cell_nums_global, ncoords_local_allranks) ) plex_parent_cell_nums_global = np.empty( ncoords_global, dtype=plex_parent_cell_nums_local.dtype ) comm.Allgatherv( plex_parent_cell_nums_local, (plex_parent_cell_nums_global, ncoords_local_allranks), ) reference_coords_local_size = np.array(reference_coords_local.size) reference_coords_local_sizes = np.empty(comm.size, dtype=int) comm.Allgatherv(reference_coords_local_size, reference_coords_local_sizes) reference_coords_global = np.empty( (ncoords_global, reference_coords_local.shape[1]), dtype=reference_coords_local.dtype, ) comm.Allgatherv( reference_coords_local, (reference_coords_global, reference_coords_local_sizes) ) global_idxs_global = np.empty(ncoords_global, dtype=global_idxs_local.dtype) comm.Allgatherv(global_idxs_local, (global_idxs_global, ncoords_local_allranks)) ranks_global = np.empty(ncoords_global, dtype=ranks_local.dtype) comm.Allgatherv(ranks_local, (ranks_global, ncoords_local_allranks)) input_ranks_global = np.empty(ncoords_global, dtype=input_ranks_local.dtype) comm.Allgatherv(input_ranks_local, (input_ranks_global, ncoords_local_allranks)) input_idxs_global = np.empty(ncoords_global, dtype=input_idxs_local.dtype) comm.Allgatherv(input_idxs_local, (input_idxs_global, ncoords_local_allranks)) # Sort by global index, which will be in rank order (they probably already # are but we can't rely on that) global_idxs_global_order = np.argsort(global_idxs_global) sorted_parent_cell_nums_global = parent_cell_nums_global[global_idxs_global_order] sorted_plex_parent_cell_nums_global = plex_parent_cell_nums_global[ global_idxs_global_order ] sorted_reference_coords_global = reference_coords_global[ global_idxs_global_order, : ] sorted_global_idxs_global = global_idxs_global[global_idxs_global_order] sorted_ranks_global = ranks_global[global_idxs_global_order] sorted_input_ranks_global = input_ranks_global[global_idxs_global_order] sorted_input_idxs_global = input_idxs_global[global_idxs_global_order] # Check order is correct - we can probably remove this eventually since it's # quite expensive if not np.all(sorted_input_ranks_global[1:] >= sorted_input_ranks_global[:-1]): raise ValueError("Global indexing has not ordered the ranks as expected") # get rid of any duplicated global indices (i.e. points in halos) unique_global_idxs, unique_idxs = np.unique( sorted_global_idxs_global, return_index=True ) unique_parent_cell_nums_global = sorted_parent_cell_nums_global[unique_idxs] unique_plex_parent_cell_nums_global = sorted_plex_parent_cell_nums_global[ unique_idxs ] unique_reference_coords_global = sorted_reference_coords_global[unique_idxs, :] unique_ranks_global = sorted_ranks_global[unique_idxs] unique_input_ranks_global = sorted_input_ranks_global[unique_idxs] unique_input_idxs_global = sorted_input_idxs_global[unique_idxs] # save the points on this rank which match the input rank ready for output input_ranks_match = unique_input_ranks_global == comm.rank output_global_idxs = unique_global_idxs[input_ranks_match] output_parent_cell_nums = unique_parent_cell_nums_global[input_ranks_match] output_plex_parent_cell_nums = unique_plex_parent_cell_nums_global[ input_ranks_match ] output_reference_coords = unique_reference_coords_global[input_ranks_match, :] output_ranks = unique_ranks_global[input_ranks_match] output_input_ranks = unique_input_ranks_global[input_ranks_match] output_input_idxs = unique_input_idxs_global[input_ranks_match] if extruded: ( output_base_parent_cell_nums, output_extrusion_heights, ) = _parent_extrusion_numbering(output_parent_cell_nums, layers) else: output_base_parent_cell_nums = None output_extrusion_heights = None # check if the input indices are in order from zero - this can also probably # be removed eventually because, again, it's expensive. if not np.array_equal(output_input_idxs, np.arange(output_input_idxs.size)): raise ValueError( "Global indexing has not ordered the input indices as expected." ) if len(output_global_idxs) != len(original_ordering_coords_local): raise ValueError( "The number of local global indices which will be used to make the swarm do not match the input number of original ordering coordinates." ) if len(output_parent_cell_nums) != len(original_ordering_coords_local): raise ValueError( "The number of local parent cell numbers which will be used to make the swarm do not match the input number of original ordering coordinates." ) if len(output_plex_parent_cell_nums) != len(original_ordering_coords_local): raise ValueError( "The number of local plex parent cell numbers which will be used to make the swarm do not match the input number of original ordering coordinates." ) if len(output_reference_coords) != len(original_ordering_coords_local): raise ValueError( "The number of local reference coordinates which will be used to make the swarm do not match the input number of original ordering coordinates." ) if len(output_ranks) != len(original_ordering_coords_local): raise ValueError( "The number of local rank numbers which will be used to make the swarm do not match the input number of original ordering coordinates." ) if len(output_input_ranks) != len(original_ordering_coords_local): raise ValueError( "The number of local input rank numbers which will be used to make the swarm do not match the input number of original ordering coordinates." ) if len(output_input_idxs) != len(original_ordering_coords_local): raise ValueError( "The number of local input indices which will be used to make the swarm do not match the input number of original ordering coordinates." ) if extruded: if len(output_base_parent_cell_nums) != len(original_ordering_coords_local): raise ValueError( "The number of local base parent cell numbers which will be used to make the swarm do not match the input number of original ordering coordinates." ) if len(output_extrusion_heights) != len(original_ordering_coords_local): raise ValueError( "The number of local extrusion heights which will be used to make the swarm do not match the input number of original ordering coordinates." ) return _dmswarm_create( [], comm, swarm, original_ordering_coords_local, output_plex_parent_cell_nums, output_global_idxs, output_reference_coords, output_parent_cell_nums, output_ranks, output_input_ranks, output_input_idxs, output_base_parent_cell_nums, output_extrusion_heights, extruded, tdim, gdim, )
[docs] def RelabeledMesh(mesh, indicator_functions, subdomain_ids, **kwargs): """Construct a new mesh that has new subdomain ids. :arg mesh: base :class:`~.MeshGeometry` object using which the new one is constructed. :arg indicator_functions: list of indicator functions that mark selected entities (cells or facets) as 1; must use "DP"/"DQ" (degree 0) functions to mark cell entities and "P" (degree 1) functions in 1D or "HDiv Trace" (degree 0) functions in 2D or 3D to mark facet entities. Can use "Q" (degree 2) functions for 3D hex meshes until we support "HDiv Trace" elements on hex. :arg subdomain_ids: list of subdomain ids associated with the indicator functions in indicator_functions; thus, must have the same length as indicator_functions. :kwarg name: optional name of the output mesh object. """ import firedrake.function as function if not isinstance(mesh, MeshGeometry): raise TypeError(f"mesh must be a MeshGeometry, not a {type(mesh)}") tmesh = mesh.topology if isinstance(tmesh, VertexOnlyMeshTopology): raise NotImplementedError("Currently does not work with VertexOnlyMesh") elif isinstance(tmesh, ExtrudedMeshTopology): raise NotImplementedError("Currently does not work with ExtrudedMesh; use RelabeledMesh() on the base mesh and then extrude") if not isinstance(indicator_functions, Sequence) or \ not isinstance(subdomain_ids, Sequence): raise ValueError("indicator_functions and subdomain_ids must be `list`s or `tuple`s of the same length") if len(indicator_functions) != len(subdomain_ids): raise ValueError("indicator_functions and subdomain_ids must be `list`s or `tuple`s of the same length") if len(indicator_functions) == 0: raise RuntimeError("At least one indicator function must be given") for f in indicator_functions: if not isinstance(f, function.Function): raise TypeError(f"indicator functions must be instances of function.Function: got {type(f)}") if f.function_space().mesh() is not mesh: raise ValueError(f"indicator functions must be defined on {mesh}") for subid in subdomain_ids: if not isinstance(subid, numbers.Integral): raise TypeError(f"subdomain id must be an integer: got {subid}") name1 = kwargs.get("name", DEFAULT_MESH_NAME) plex = tmesh.topology_dm # Clone plex: plex1 will share topology with plex. plex1 = plex.clone() plex1.setName(_generate_default_mesh_topology_name(name1)) # Remove pyop2 labels. plex1.removeLabel("pyop2_core") plex1.removeLabel("pyop2_owned") plex1.removeLabel("pyop2_ghost") # Do not remove "exterior_facets" and "interior_facets" labels; # those should be reused as the mesh has already been distributed (if size > 1). for label_name in [dmcommon.CELL_SETS_LABEL, dmcommon.FACE_SETS_LABEL]: if not plex1.hasLabel(label_name): plex1.createLabel(label_name) for f, subid in zip(indicator_functions, subdomain_ids): elem = f.topological.function_space().ufl_element() if elem.value_shape != (): raise RuntimeError(f"indicator functions must be scalar: got {elem.value_shape} != ()") if elem.family() in {"Discontinuous Lagrange", "DQ"} and elem.degree() == 0: # cells height = 0 dmlabel_name = dmcommon.CELL_SETS_LABEL elif (elem.family() == "HDiv Trace" and elem.degree() == 0 and mesh.topological_dimension() > 1) or \ (elem.family() == "Lagrange" and elem.degree() == 1 and mesh.topological_dimension() == 1) or \ (elem.family() == "Q" and elem.degree() == 2 and mesh.topology.ufl_cell().cellname() == "hexahedron"): # facets height = 1 dmlabel_name = dmcommon.FACE_SETS_LABEL else: raise ValueError(f"indicator functions must be 'DP' or 'DQ' (degree 0) to mark cells and 'P' (degree 1) in 1D or 'HDiv Trace' (degree 0) in 2D or 3D to mark facets: got (family, degree) = ({elem.family()}, {elem.degree()})") # Clear label stratum; this is a copy, so safe to change. plex1.clearLabelStratum(dmlabel_name, subid) dmlabel = plex1.getLabel(dmlabel_name) section = f.topological.function_space().dm.getSection() dmcommon.mark_points_with_function_array(plex, section, height, f.dat.data_ro_with_halos.real.astype(IntType), dmlabel, subid) distribution_parameters_noop = {"partition": False, "overlap_type": (DistributedMeshOverlapType.NONE, 0)} reorder_noop = None tmesh1 = MeshTopology(plex1, name=plex1.getName(), reorder=reorder_noop, distribution_parameters=distribution_parameters_noop, perm_is=tmesh._dm_renumbering, distribution_name=tmesh._distribution_name, permutation_name=tmesh._permutation_name, comm=tmesh.comm) return make_mesh_from_mesh_topology(tmesh1, name1)
[docs] @PETSc.Log.EventDecorator() def SubDomainData(geometric_expr): """Creates a subdomain data object from a boolean-valued UFL expression. The result can be attached as the subdomain_data field of a :class:`ufl.Measure`. For example: .. code-block:: python3 x = mesh.coordinates sd = SubDomainData(x[0] < 0.5) assemble(f*dx(subdomain_data=sd)) """ import firedrake.functionspace as functionspace import firedrake.projection as projection # Find domain from expression m = extract_unique_domain(geometric_expr) # Find selected cells fs = functionspace.FunctionSpace(m, 'DG', 0) f = projection.project(ufl.conditional(geometric_expr, 1, 0), fs) # Create cell subset indices, = np.nonzero(f.dat.data_ro_with_halos > 0.5) return op2.Subset(m.cell_set, indices)
[docs] def Submesh(mesh, subdim, subdomain_id, label_name=None, name=None): """Construct a submesh from a given mesh. Parameters ---------- mesh : MeshGeometry Parent mesh (`MeshGeometry`). subdim : int Topological dimension of the submesh. subdomain_id : int Subdomain ID representing the submesh. label_name : str Name of the label to search ``subdomain_id`` in. name : str Name of the submesh. Returns ------- MeshGeometry Submesh. Notes ----- Currently, one can only make submeshes that have the same topological dimension as the parent mesh. Examples -------- .. code-block:: python3 dim = 2 mesh = RectangleMesh(2, 1, 2., 1., quadrilateral=True) x, y = SpatialCoordinate(mesh) DQ0 = FunctionSpace(mesh, "DQ", 0) indicator_function = Function(DQ0).interpolate(conditional(x > 1., 1, 0)) mesh.mark_entities(indicator_function, 999) mesh = RelabeledMesh(mesh, [indicator_function], [999]) subm = Submesh(mesh, dim, 999) V0 = FunctionSpace(mesh, "CG", 1) V1 = FunctionSpace(subm, "CG", 1) V = V0 * V1 u = TrialFunction(V) v = TestFunction(V) u0, u1 = split(u) v0, v1 = split(v) dx0 = Measure("dx", domain=mesh) dx1 = Measure("dx", domain=subm) a = inner(u1, v0) * dx0(999) + inner(u0, v1) * dx1 A = assemble(a) """ if not isinstance(mesh, MeshGeometry): raise TypeError("Parent mesh must be a `MeshGeometry`") if isinstance(mesh.topology, ExtrudedMeshTopology): raise NotImplementedError("Can not create a submesh of an ``ExtrudedMesh``") elif isinstance(mesh.topology, VertexOnlyMeshTopology): raise NotImplementedError("Can not create a submesh of a ``VertexOnlyMesh``") mesh.topology.init() plex = mesh.topology_dm dim = plex.getDimension() if subdim != dim: raise NotImplementedError(f"Found submesh dim ({subdim}) != parent dim ({dim})") if label_name is None: label_name = dmcommon.CELL_SETS_LABEL name = name or _generate_default_submesh_name(mesh.name) subplex = dmcommon.submesh_create(plex, label_name, subdomain_id) subplex.setName(_generate_default_mesh_topology_name(name)) if subplex.getDimension() != subdim: raise RuntimeError(f"Found subplex dim ({subplex.getDimension()}) != expected ({subdim})") submesh = Mesh(subplex, name=name, distribution_parameters={"partition": False, "overlap_type": (DistributedMeshOverlapType.NONE, 0)}) submesh.topology.submesh_parent = mesh.topology submesh.submesh_parent = mesh submesh.init() return submesh