# A module implementing strong (Dirichlet) boundary conditions.
import numpy as np
import functools
import itertools
import ufl
from ufl import as_ufl, as_tensor
from finat.ufl import VectorElement
import finat
import pyop2 as op2
from pyop2 import exceptions
from pyop2.utils import as_tuple
import firedrake
import firedrake.matrix as matrix
import firedrake.utils as utils
from firedrake import ufl_expr
from firedrake import slate
from firedrake import solving
from firedrake.formmanipulation import ExtractSubBlock
from firedrake.adjoint_utils.dirichletbc import DirichletBCMixin
from firedrake.petsc import PETSc
__all__ = ['DirichletBC', 'homogenize', 'EquationBC']
class BCBase(object):
r'''Implementation of a base class of Dirichlet-like boundary conditions.
:arg V: the :class:`.FunctionSpace` on which the boundary condition
should be applied.
:arg sub_domain: the integer id(s) of the boundary region over which the
boundary condition should be applied. The string "on_boundary" may be used
to indicate all of the boundaries of the domain. In the case of extrusion
the ``top`` and ``bottom`` strings are used to flag the bcs application on
the top and bottom boundaries of the extruded mesh respectively.
'''
@PETSc.Log.EventDecorator()
def __init__(self, V, sub_domain):
self._function_space = V
self.sub_domain = (sub_domain, ) if isinstance(sub_domain, str) else as_tuple(sub_domain)
# If this BC is defined on a subspace (IndexedFunctionSpace or
# ComponentFunctionSpace, possibly recursively), pull out the appropriate
# indices.
components = []
indexing = []
indices = []
fs = self._function_space
while True:
# Add index to indices if found
if fs.index is not None:
indexing.append(fs.index)
indices.append(fs.index)
if fs.component is not None:
components.append(fs.component)
indices.append(fs.component)
# Now try the parent
if fs.parent is not None:
fs = fs.parent
else:
# All done
break
# Used for indexing functions passed in.
self._indices = tuple(reversed(indices))
# init bcs
self.bcs = []
# Remember the depth of the bc
self._bc_depth = 0
def __iter__(self):
yield self
yield from itertools.chain(*self.bcs)
def function_space(self):
'''The :class:`.FunctionSpace` on which this boundary condition should
be applied.'''
return self._function_space
def function_space_index(self):
fs = self._function_space
if fs.component is not None:
fs = fs.parent
if fs.index is None:
raise RuntimeError("This function should only be called when function space is indexed")
return fs.index
@utils.cached_property
def domain_args(self):
r"""The sub_domain the BC applies to."""
# Define facet, edge, vertex using tuples:
# Ex in 3D:
# user input returned keys
# facet = ((1, ), ) -> ((2, ((1, ), )), (1, ()), (0, ()))
# edge = ((1, 2), ) -> ((2, ()), (1, ((1, 2), )), (0, ()))
# vertex = ((1, 2, 4), ) -> ((2, ()), (1, ()), (0, ((1, 2, 4), ))
#
# Multiple facets:
# (1, 2, 4) := ((1, ), (2, ), (4,)) -> ((2, ((1, ), (2, ), (4, ))), (1, ()), (0, ()))
#
# One facet and two edges:
# ((1,), (1, 3), (1, 4)) -> ((2, ((1,),)), (1, ((1,3), (1, 4))), (0, ()))
#
sub_d = self.sub_domain
# if string, return
if isinstance(sub_d, str):
return (sub_d, )
# convert: i -> (i, )
sub_d = as_tuple(sub_d)
# convert: (i, j, (k, l)) -> ((i, ), (j, ), (k, l))
sub_d = [as_tuple(i) for i in sub_d]
ndim = self.function_space().mesh().topology_dm.getDimension()
sd = [[] for _ in range(ndim)]
for i in sub_d:
sd[ndim - len(i)].append(i)
s = []
for i in range(ndim):
s.append((ndim - 1 - i, as_tuple(sd[i])))
return as_tuple(s)
@utils.cached_property
def nodes(self):
'''The list of nodes at which this boundary condition applies.'''
# First, we bail out on zany elements. We don't know how to do BC's for them.
V = self._function_space
if isinstance(V.finat_element, (finat.Argyris, finat.Morley, finat.Bell)) or \
(isinstance(V.finat_element, finat.Hermite) and V.mesh().topological_dimension() > 1):
raise NotImplementedError("Strong BCs not implemented for element %r, use Nitsche-type methods until we figure this out" % V.finat_element)
def hermite_stride(bcnodes):
fe = self._function_space.finat_element
tdim = self._function_space.mesh().topological_dimension()
if isinstance(fe, finat.Hermite) and tdim == 1:
bcnodes = bcnodes[::2] # every second dof is the vertex value
elif fe.complex.is_macrocell() and self._function_space.ufl_element().sobolev_space == ufl.H1:
# Skip derivative nodes for supersmooth H1 functions
nodes = fe.fiat_equivalent.dual_basis()
deriv_nodes = [i for i, node in enumerate(nodes)
if len(node.deriv_dict) != 0]
if len(deriv_nodes) > 0:
deriv_ids = self._function_space.cell_node_list[:, deriv_nodes]
bcnodes = np.setdiff1d(bcnodes, deriv_ids)
return bcnodes
sub_d = (self.sub_domain, ) if isinstance(self.sub_domain, str) else as_tuple(self.sub_domain)
sub_d = [s if isinstance(s, str) else as_tuple(s) for s in sub_d]
bcnodes = []
for s in sub_d:
if isinstance(s, str):
bcnodes.append(hermite_stride(self._function_space.boundary_nodes(s)))
else:
# s is of one of the following formats:
# facet: (i, )
# edge: (i, j)
# vertex: (i, j, k)
# take intersection of facet nodes, and add it to bcnodes
# i, j, k can also be strings.
bcnodes1 = []
if len(s) > 1 and not isinstance(self._function_space.finat_element, (finat.Lagrange, finat.GaussLobattoLegendre)):
raise TypeError("Currently, edge conditions have only been tested with CG Lagrange elements")
for ss in s:
# intersection of facets
# Edge conditions have only been tested with Lagrange elements.
# Need to expand the list.
bcnodes1.append(hermite_stride(self._function_space.boundary_nodes(ss)))
bcnodes1 = functools.reduce(np.intersect1d, bcnodes1)
bcnodes.append(bcnodes1)
return np.concatenate(bcnodes)
@utils.cached_property
def node_set(self):
'''The subset corresponding to the nodes at which this
boundary condition applies.'''
return op2.Subset(self._function_space.node_set, self.nodes)
@PETSc.Log.EventDecorator()
def zero(self, r):
r"""Zero the boundary condition nodes on ``r``.
:arg r: a :class:`.Function` to which the
boundary condition should be applied.
"""
if isinstance(r, matrix.MatrixBase):
raise NotImplementedError("Zeroing bcs on a Matrix is not supported")
for idx in self._indices:
r = r.sub(idx)
try:
r.dat.zero(subset=self.node_set)
except exceptions.MapValueError:
raise RuntimeError("%r defined on incompatible FunctionSpace!" % r)
@PETSc.Log.EventDecorator()
def set(self, r, val):
r"""Set the boundary nodes to a prescribed (external) value.
:arg r: the :class:`Function` to which the value should be applied.
:arg val: the prescribed value.
"""
for idx in self._indices:
r = r.sub(idx)
if not np.isscalar(val):
for idx in self._indices:
val = val.sub(idx)
r.assign(val, subset=self.node_set)
def integrals(self):
raise NotImplementedError("integrals() method has to be overwritten")
@PETSc.Log.EventDecorator()
def as_subspace(self, field, V, use_split):
fs = self._function_space
if fs.parent is not None and isinstance(fs.parent.ufl_element(), VectorElement):
index = fs.parent.index
else:
index = fs.index
cmpt = fs.component
# TODO: need to test this logic
field_renumbering = dict([f, i] for i, f in enumerate(field))
if index in field:
if len(field) == 1:
W = V
else:
W = V.subfunctions[field_renumbering[index]] if use_split else V.sub(field_renumbering[index])
if cmpt is not None:
W = W.sub(cmpt)
return W
def sorted_equation_bcs(self):
return []
def increment_bc_depth(self):
# Increment _bc_depth by 1
self._bc_depth += 1
for bc in itertools.chain(*self.bcs):
bc._bc_depth += 1
def extract_forms(self, form_type):
# Return boundary condition objects actually used in assembly.
raise NotImplementedError("Method to extract form objects not implemented.")
[docs]
class DirichletBC(BCBase, DirichletBCMixin):
r'''Implementation of a strong Dirichlet boundary condition.
.. note:
This uses facet markers in the domain, so may be used to
applied strong boundary conditions to interior facets (if they
have an appropriate mesh marker). The "on_boundary" string only
applies to the exterior boundaries of the domain.
:arg V: the :class:`.FunctionSpace` on which the boundary condition
should be applied.
:arg g: the boundary condition values. This can be a :class:`.Function` on
``V``, or a UFL expression that can be interpolated into
``V``, for example, a :class:`.Constant` , an iterable of
literal constants (converted to a UFL expression), or a
literal constant which can be pointwise evaluated at the nodes
of ``V``.
:arg sub_domain: the integer id(s) of the boundary region over which the
boundary condition should be applied. The string "on_boundary" may be used
to indicate all of the boundaries of the domain. In the case of extrusion
the ``top`` and ``bottom`` strings are used to flag the bcs application on
the top and bottom boundaries of the extruded mesh respectively.
:arg method: the method for determining boundary nodes.
DEPRECATED. The only way boundary nodes are identified is by
topological association.
'''
@DirichletBCMixin._ad_annotate_init
def __init__(self, V, g, sub_domain, method=None):
if method == "geometric":
raise NotImplementedError("'geometric' bcs are no longer implemented. Please enforce them weakly")
if method not in {None, "topological"}:
raise ValueError(f"Unhandled boundary condition method '{method}'")
if method is not None:
import warnings
with warnings.catch_warnings():
warnings.simplefilter('always', DeprecationWarning)
warnings.warn("Selecting a bcs method is deprecated. Only topological association is supported",
DeprecationWarning)
super().__init__(V, sub_domain)
if len(V.boundary_set) and not set(self.sub_domain).issubset(V.boundary_set):
raise ValueError(f"Sub-domain {self.sub_domain} not in the boundary set of the restricted space {V.boundary_set}.")
if len(V) > 1:
raise ValueError("Cannot apply boundary conditions on mixed spaces directly.\n"
"Apply to the components by indexing the space with .sub(...)")
self.function_arg = g
self._original_arg = g
self.is_linear = True
self.Jp_eq_J = True
[docs]
def dirichlet_bcs(self):
yield self
@property
def function_arg(self):
'''The value of this boundary condition.'''
if hasattr(self, "_function_arg_update"):
self._function_arg_update()
return self._function_arg
[docs]
@PETSc.Log.EventDecorator()
def reconstruct(self, field=None, V=None, g=None, sub_domain=None, use_split=False, indices=()):
fs = self.function_space()
if V is None:
V = fs
for index in indices:
V = V.sub(index)
if g is None:
g = self._original_arg
if sub_domain is None:
sub_domain = self.sub_domain
if field is not None:
assert V is not None, "`V` can not be `None` when `field` is not `None`"
V = self.as_subspace(field, V, use_split)
if V is None:
return
if V == fs and \
V.parent == fs.parent and \
V.index == fs.index and \
(V.parent is None or V.parent.parent == fs.parent.parent) and \
(V.parent is None or V.parent.index == fs.parent.index) and \
g == self._original_arg and \
sub_domain == self.sub_domain:
return self
return type(self)(V, g, sub_domain)
@function_arg.setter
def function_arg(self, g):
'''Set the value of this boundary condition.'''
try:
# Clear any previously set update function
del self._function_arg_update
except AttributeError:
pass
V = self.function_space()
if isinstance(g, firedrake.Function) and g.ufl_element().family() != "Real":
if g.function_space() != V:
raise RuntimeError("%r is defined on incompatible FunctionSpace!" % g)
self._function_arg = g
elif isinstance(g, ufl.classes.Zero):
if g.ufl_shape and g.ufl_shape != V.value_shape:
raise ValueError(f"Provided boundary value {g} does not match shape of space")
# Special case. Scalar zero for direct Function.assign.
self._function_arg = g
elif isinstance(g, ufl.classes.Expr):
if g.ufl_shape != V.value_shape:
raise RuntimeError(f"Provided boundary value {g} does not match shape of space")
try:
self._function_arg = firedrake.Function(V)
# Use `Interpolator` instead of assembling an `Interpolate` form
# as the expression compilation needs to happen at this stage to
# determine if we should use interpolation or projection
# -> e.g. interpolation may not be supported for the element.
self._function_arg_update = firedrake.Interpolator(g, self._function_arg)._interpolate
except (NotImplementedError, AttributeError):
# Element doesn't implement interpolation
self._function_arg = firedrake.Function(V).project(g)
self._function_arg_update = firedrake.Projector(g, self._function_arg).project
else:
try:
g = as_ufl(g)
self._function_arg = g
except ValueError:
try:
# Recurse to handle this through interpolation.
self.function_arg = as_ufl(as_tensor(g))
except ValueError:
raise ValueError(f"{g} is not a valid DirichletBC expression")
[docs]
def homogenize(self):
'''Convert this boundary condition into a homogeneous one.
Set the value to zero.
'''
self.function_arg = ufl.zero(self.function_arg.ufl_shape)
[docs]
def restore(self):
'''Restore the original value of this boundary condition.
This uses the value passed on instantiation of the object.'''
self.function_arg = self._original_arg
[docs]
def set_value(self, val):
'''Set the value of this boundary condition.
:arg val: The boundary condition values. See
:class:`.DirichletBC` for valid values.
'''
self.function_arg = val
self._original_arg = val
[docs]
@PETSc.Log.EventDecorator('ApplyBC')
@DirichletBCMixin._ad_annotate_apply
def apply(self, r, u=None):
r"""Apply this boundary condition to ``r``.
:arg r: a :class:`.Function` or :class:`.Matrix` to which the
boundary condition should be applied.
:arg u: an optional current state. If ``u`` is supplied then
``r`` is taken to be a residual and the boundary condition
nodes are set to the value ``u-bc``. Supplying ``u`` has
no effect if ``r`` is a :class:`.Matrix` rather than a
:class:`.Function` . If ``u`` is absent, then the boundary
condition nodes of ``r`` are set to the boundary condition
values.
If ``r`` is a :class:`.Matrix` , it will be assembled with a 1
on diagonals where the boundary condition applies and 0 in the
corresponding rows and columns.
"""
if isinstance(r, matrix.MatrixBase):
raise NotImplementedError("Capability to delay bc application has been dropped. Use assemble(a, bcs=bcs, ...) to obtain a fully assembled matrix")
fs = self._function_space
# Check that u matches r if supplied
if u and u.function_space() != r.function_space():
raise RuntimeError("Mismatching spaces for %s and %s" % (r, u))
# Check that r's function space matches the BC's function
# space. Run up through parents (IndexedFunctionSpace or
# ComponentFunctionSpace) until we either match the function space, or
# else we have a mismatch and raise an error.
while True:
if fs == r.function_space():
break
elif fs.parent is not None:
fs = fs.parent
else:
raise RuntimeError("%r defined on incompatible FunctionSpace!" % r)
# Apply the indexing to r (and u if supplied)
for idx in self._indices:
r = r.sub(idx)
if u:
u = u.sub(idx)
if u:
r.assign(u - self.function_arg, subset=self.node_set)
else:
r.assign(self.function_arg, subset=self.node_set)
[docs]
def integrals(self):
return []
def _as_nonlinear_variational_problem_arg(self):
return self
[docs]
class EquationBC(object):
r'''Construct and store EquationBCSplit objects (for `F`, `J`, and `Jp`).
:param eq: the linear/nonlinear form equation
:param u: the :class:`.Function` to solve for
:arg sub_domain: see :class:`.DirichletBC` .
:arg bcs: a list of :class:`.DirichletBC` s and/or :class:`.EquationBC` s
to be applied to this boundary condition equation (optional)
:param J: the Jacobian for this boundary equation (optional)
:param Jp: a form used for preconditioning the linear system,
optional, if not supplied then the Jacobian itself
will be used.
:arg V: the :class:`.FunctionSpace` on which
the equation boundary condition is applied (optional)
:arg is_linear: this flag is used only with the `reconstruct` method
:arg Jp_eq_J: this flag is used only with the `reconstruct` method
'''
@PETSc.Log.EventDecorator()
def __init__(self, *args, bcs=None, J=None, Jp=None, V=None, is_linear=False, Jp_eq_J=False):
from firedrake.variational_solver import check_pde_args, is_form_consistent
if isinstance(args[0], ufl.classes.Equation):
# initial construction from equation
eq = args[0]
u = args[1]
sub_domain = args[2]
if V is None:
V = eq.lhs.arguments()[0].function_space()
bcs = solving._extract_bcs(bcs)
# Jp_eq_J is progressively evaluated as the tree is constructed
self.Jp_eq_J = Jp is None and all([bc.Jp_eq_J for bc in bcs])
# linear
if isinstance(eq.lhs, ufl.Form) and isinstance(eq.rhs, ufl.Form):
J = eq.lhs
Jp = Jp or J
if eq.rhs == 0:
F = ufl_expr.action(J, u)
else:
if not isinstance(eq.rhs, (ufl.Form, slate.slate.TensorBase)):
raise TypeError("Provided BC RHS is a '%s', not a Form or Slate Tensor" % type(eq.rhs).__name__)
if len(eq.rhs.arguments()) != 1:
raise ValueError("Provided BC RHS is not a linear form")
F = ufl_expr.action(J, u) - eq.rhs
self.is_linear = True
# nonlinear
else:
if eq.rhs != 0:
raise TypeError("RHS of a nonlinear form equation has to be 0")
F = eq.lhs
J = J or ufl_expr.derivative(F, u)
Jp = Jp or J
self.is_linear = False
# Check form style consistency
is_form_consistent(self.is_linear, bcs)
# Argument checking
check_pde_args(F, J, Jp)
# EquationBCSplit objects for `F`, `J`, and `Jp`
self._F = EquationBCSplit(F, u, sub_domain, bcs=[bc if isinstance(bc, DirichletBC) else bc._F for bc in bcs], V=V)
self._J = EquationBCSplit(J, u, sub_domain, bcs=[bc if isinstance(bc, DirichletBC) else bc._J for bc in bcs], V=V)
self._Jp = EquationBCSplit(Jp, u, sub_domain, bcs=[bc if isinstance(bc, DirichletBC) else bc._Jp for bc in bcs], V=V)
elif all(isinstance(args[i], EquationBCSplit) for i in range(3)):
# reconstruction for splitting `solving_utils.split`
self.Jp_eq_J = Jp_eq_J
self.is_linear = is_linear
self._F = args[0]
self._J = args[1]
self._Jp = args[2]
else:
raise TypeError("Wrong EquationBC arguments")
def __iter__(self):
yield from itertools.chain(self._F)
[docs]
def dirichlet_bcs(self):
# _F, _J, and _Jp all have the same DirichletBCs
yield from self._F.dirichlet_bcs()
[docs]
@PETSc.Log.EventDecorator()
def reconstruct(self, V, subu, u, field, is_linear):
_F = self._F.reconstruct(field=field, V=V, subu=subu, u=u)
_J = self._J.reconstruct(field=field, V=V, subu=subu, u=u)
_Jp = self._Jp.reconstruct(field=field, V=V, subu=subu, u=u)
if all([_F is not None, _J is not None, _Jp is not None]):
return EquationBC(_F, _J, _Jp, Jp_eq_J=self.Jp_eq_J, is_linear=is_linear)
def _as_nonlinear_variational_problem_arg(self):
return self
class EquationBCSplit(BCBase):
r'''Class for a BC tree that stores/manipulates either `F`, `J`, or `Jp`.
:param form: the linear/nonlinear form: `F`, `J`, or `Jp`.
:param u: the :class:`.Function` to solve for
:arg sub_domain: see :class:`.DirichletBC` .
:arg bcs: a list of :class:`.DirichletBC` s and/or :class:`.EquationBC` s
to be applied to this boundary condition equation (optional)
:arg V: the :class:`.FunctionSpace` on which
the equation boundary condition is applied (optional)
'''
def __init__(self, form, u, sub_domain, bcs=None, V=None):
# This nested structure will enable recursive application of boundary conditions.
#
# def _assemble(..., bcs, ...)
# ...
# for bc in bcs:
# # boundary conditions for boundary conditions for boun...
# ... _assemble(bc.f, bc.bcs, ...)
# ...
self.f = form
self.u = u
if V is None:
V = self.f.arguments()[0].function_space()
super(EquationBCSplit, self).__init__(V, sub_domain)
# overwrite bcs
self.bcs = bcs or []
for bc in self.bcs:
bc.increment_bc_depth()
def dirichlet_bcs(self):
for bc in self.bcs:
yield from bc.dirichlet_bcs()
def sorted_equation_bcs(self):
# Create a list of EquationBCSplit objects
sorted_ebcs = list(bc for bc in itertools.chain(*self.bcs) if isinstance(bc, EquationBCSplit))
# Sort this list to avoid `self._y` copys in matrix_free/operators.py
sorted_ebcs.sort(key=lambda bc: bc._bc_depth, reverse=True)
return sorted_ebcs
def integrals(self):
return self.f.integrals()
def add(self, bc):
if not isinstance(bc, (DirichletBC, EquationBCSplit)):
raise TypeError("EquationBCSplit.add expects an instance of DirichletBC or EquationBCSplit.")
bc.increment_bc_depth()
self.bcs.append(bc)
@PETSc.Log.EventDecorator()
def reconstruct(self, field=None, V=None, subu=None, u=None, row_field=None, col_field=None, action_x=None, use_split=False):
subu = subu or self.u
row_field = row_field or field
col_field = col_field or field
# define W and form
if field is None:
# Returns self
W = self._function_space
form = self.f
else:
assert V is not None, "`V` can not be `None` when `field` is not `None`"
W = self.as_subspace(field, V, use_split)
if W is None:
return
rank = len(self.f.arguments())
splitter = ExtractSubBlock()
if rank == 1:
form = splitter.split(self.f, argument_indices=(row_field, ))
elif rank == 2:
form = splitter.split(self.f, argument_indices=(row_field, col_field))
if u is not None:
form = firedrake.replace(form, {self.u: u})
if action_x is not None:
assert len(form.arguments()) == 2, "rank of self.f must be 2 when using action_x parameter"
form = ufl_expr.action(form, action_x)
ebc = EquationBCSplit(form, subu, self.sub_domain, V=W)
for bc in self.bcs:
if isinstance(bc, DirichletBC):
ebc.add(bc.reconstruct(V=W, g=bc.function_arg, sub_domain=bc.sub_domain, use_split=use_split))
elif isinstance(bc, EquationBCSplit):
bc_temp = bc.reconstruct(field=field, V=V, subu=subu, u=u, row_field=row_field, col_field=col_field, action_x=action_x, use_split=use_split)
# Due to the "if index", bc_temp can be None
if bc_temp is not None:
ebc.add(bc_temp)
return ebc
def _as_nonlinear_variational_problem_arg(self):
# NonlinearVariationalProblem expects EquationBC, not EquationBCSplit.
# -- This method is required when NonlinearVariationalProblem is constructed inside PC.
if len(self.f.arguments()) != 2:
raise NotImplementedError(f"Not expecting a form of rank {len(self.f.arguments())} (!= 2)")
J = self.f
Vcol = J.arguments()[-1].function_space()
u = firedrake.Function(Vcol)
F = ufl_expr.action(J, u)
Vrow = self._function_space
sub_domain = self.sub_domain
bcs = tuple(bc._as_nonlinear_variational_problem_arg() for bc in self.bcs)
return EquationBC(F == 0, u, sub_domain, bcs=bcs, J=J, V=Vrow)
[docs]
@PETSc.Log.EventDecorator()
def homogenize(bc):
r"""Create a homogeneous version of a :class:`.DirichletBC` object and return it. If
``bc`` is an iterable containing one or more :class:`.DirichletBC` objects,
then return a list of the homogeneous versions of those :class:`.DirichletBC` s.
:arg bc: a :class:`.DirichletBC` , or iterable object comprising :class:`.DirichletBC` (s).
"""
if isinstance(bc, (tuple, list)):
lst = []
for i in bc:
if not isinstance(i, DirichletBC):
raise TypeError("homogenize only makes sense for DirichletBCs")
lst.append(DirichletBC(i.function_space(), 0, i.sub_domain))
return lst
elif isinstance(bc, DirichletBC):
return DirichletBC(bc.function_space(), 0, bc.sub_domain)
else:
raise TypeError("homogenize only takes a DirichletBC or a list/tuple of DirichletBCs")
def extract_subdomain_ids(bcs):
"""Return a tuple of subdomain ids for each component of a MixedFunctionSpace.
Parameters
----------
bcs :
A list of boundary conditions.
Returns
-------
A tuple of subdomain ids for each component of a MixedFunctionSpace.
"""
if isinstance(bcs, DirichletBC):
bcs = (bcs,)
if len(bcs) == 0:
return None
V = bcs[0].function_space()
while V.parent:
V = V.parent
_chain = itertools.chain.from_iterable
_to_tuple = lambda s: (s,) if isinstance(s, (int, str)) else s
subdomain_ids = tuple(tuple(_chain(_to_tuple(bc.sub_domain)
for bc in bcs if bc.function_space() == Vsub))
for Vsub in V)
return subdomain_ids
def restricted_function_space(V, ids):
"""Create a :class:`.RestrictedFunctionSpace` from a tuple of subdomain ids.
Parameters
----------
V :
FunctionSpace object to restrict
ids :
A tuple of subdomain ids.
Returns
-------
The RestrictedFunctionSpace.
"""
if not ids:
return V
assert len(ids) == len(V)
spaces = [Vsub if len(boundary_set) == 0 else
firedrake.RestrictedFunctionSpace(Vsub, boundary_set=boundary_set)
for Vsub, boundary_set in zip(V, ids)]
if len(spaces) == 1:
return spaces[0]
else:
return firedrake.MixedFunctionSpace(spaces)