Source code for firedrake.bcs

# A module implementing strong (Dirichlet) boundary conditions.
import numpy as np

import functools
import itertools

import ufl
from ufl import as_ufl, as_tensor
from finat.ufl import VectorElement
import finat

import pyop2 as op2
from pyop2 import exceptions
from pyop2.utils import as_tuple

import firedrake
import firedrake.matrix as matrix
import firedrake.utils as utils
from firedrake import ufl_expr
from firedrake import slate
from firedrake import solving
from firedrake.formmanipulation import ExtractSubBlock
from firedrake.adjoint_utils.dirichletbc import DirichletBCMixin
from firedrake.petsc import PETSc

__all__ = ['DirichletBC', 'homogenize', 'EquationBC']


class BCBase(object):
    r'''Implementation of a base class of Dirichlet-like boundary conditions.

    :arg V: the :class:`.FunctionSpace` on which the boundary condition
        should be applied.
    :arg sub_domain: the integer id(s) of the boundary region over which the
        boundary condition should be applied. The string "on_boundary" may be used
        to indicate all of the boundaries of the domain. In the case of extrusion
        the ``top`` and ``bottom`` strings are used to flag the bcs application on
        the top and bottom boundaries of the extruded mesh respectively.
    '''
    @PETSc.Log.EventDecorator()
    def __init__(self, V, sub_domain):

        self._function_space = V
        self.sub_domain = sub_domain
        # If this BC is defined on a subspace (IndexedFunctionSpace or
        # ComponentFunctionSpace, possibly recursively), pull out the appropriate
        # indices.
        components = []
        indexing = []
        indices = []
        fs = self._function_space
        while True:
            # Add index to indices if found
            if fs.index is not None:
                indexing.append(fs.index)
                indices.append(fs.index)
            if fs.component is not None:
                components.append(fs.component)
                indices.append(fs.component)
            # Now try the parent
            if fs.parent is not None:
                fs = fs.parent
            else:
                # All done
                break
        # Used for indexing functions passed in.
        self._indices = tuple(reversed(indices))
        # init bcs
        self.bcs = []
        # Remember the depth of the bc
        self._bc_depth = 0

    def __iter__(self):
        yield self
        yield from itertools.chain(*self.bcs)

    def function_space(self):
        '''The :class:`.FunctionSpace` on which this boundary condition should
        be applied.'''

        return self._function_space

    def function_space_index(self):
        fs = self._function_space
        if fs.component is not None:
            fs = fs.parent
        if fs.index is None:
            raise RuntimeError("This function should only be called when function space is indexed")
        return fs.index

    @utils.cached_property
    def domain_args(self):
        r"""The sub_domain the BC applies to."""
        # Define facet, edge, vertex using tuples:
        # Ex in 3D:
        #           user input                                                         returned keys
        # facet  = ((1, ), )                                  ->     ((2, ((1, ), )), (1, ()),         (0, ()))
        # edge   = ((1, 2), )                                 ->     ((2, ()),        (1, ((1, 2), )), (0, ()))
        # vertex = ((1, 2, 4), )                              ->     ((2, ()),        (1, ()),         (0, ((1, 2, 4), ))
        #
        # Multiple facets:
        # (1, 2, 4) := ((1, ), (2, ), (4,))                   ->     ((2, ((1, ), (2, ), (4, ))), (1, ()), (0, ()))
        #
        # One facet and two edges:
        # ((1,), (1, 3), (1, 4))                              ->     ((2, ((1,),)), (1, ((1,3), (1, 4))), (0, ()))
        #

        sub_d = self.sub_domain
        # if string, return
        if isinstance(sub_d, str):
            return (sub_d, )
        # convert: i -> (i, )
        sub_d = as_tuple(sub_d)
        # convert: (i, j, (k, l)) -> ((i, ), (j, ), (k, l))
        sub_d = [as_tuple(i) for i in sub_d]

        ndim = self.function_space().mesh().topology_dm.getDimension()
        sd = [[] for _ in range(ndim)]
        for i in sub_d:
            sd[ndim - len(i)].append(i)
        s = []
        for i in range(ndim):
            s.append((ndim - 1 - i, as_tuple(sd[i])))
        return as_tuple(s)

    @utils.cached_property
    def nodes(self):
        '''The list of nodes at which this boundary condition applies.'''

        # First, we bail out on zany elements.  We don't know how to do BC's for them.
        V = self._function_space
        if isinstance(V.finat_element, (finat.Argyris, finat.Morley, finat.Bell)) or \
           (isinstance(V.finat_element, finat.Hermite) and V.mesh().topological_dimension() > 1):
            raise NotImplementedError("Strong BCs not implemented for element %r, use Nitsche-type methods until we figure this out" % V.finat_element)

        def hermite_stride(bcnodes):
            fe = self._function_space.finat_element
            tdim = self._function_space.mesh().topological_dimension()
            if isinstance(fe, finat.Hermite) and tdim == 1:
                bcnodes = bcnodes[::2]  # every second dof is the vertex value
            elif fe.complex.is_macrocell() and self._function_space.ufl_element().sobolev_space == ufl.H1:
                # Skip derivative nodes for supersmooth H1 functions
                nodes = fe.fiat_equivalent.dual_basis()
                deriv_nodes = [i for i, node in enumerate(nodes)
                               if len(node.deriv_dict) != 0]
                if len(deriv_nodes) > 0:
                    deriv_ids = self._function_space.cell_node_list[:, deriv_nodes]
                    bcnodes = np.setdiff1d(bcnodes, deriv_ids)
            return bcnodes

        sub_d = (self.sub_domain, ) if isinstance(self.sub_domain, str) else as_tuple(self.sub_domain)
        sub_d = [s if isinstance(s, str) else as_tuple(s) for s in sub_d]
        bcnodes = []
        for s in sub_d:
            if isinstance(s, str):
                bcnodes.append(hermite_stride(self._function_space.boundary_nodes(s)))
            else:
                # s is of one of the following formats:
                # facet: (i, )
                # edge: (i, j)
                # vertex: (i, j, k)
                # take intersection of facet nodes, and add it to bcnodes
                # i, j, k can also be strings.
                bcnodes1 = []
                if len(s) > 1 and not isinstance(self._function_space.finat_element, (finat.Lagrange, finat.GaussLobattoLegendre)):
                    raise TypeError("Currently, edge conditions have only been tested with CG Lagrange elements")
                for ss in s:
                    # intersection of facets
                    # Edge conditions have only been tested with Lagrange elements.
                    # Need to expand the list.
                    bcnodes1.append(hermite_stride(self._function_space.boundary_nodes(ss)))
                bcnodes1 = functools.reduce(np.intersect1d, bcnodes1)
                bcnodes.append(bcnodes1)
        return np.concatenate(bcnodes)

    @utils.cached_property
    def node_set(self):
        '''The subset corresponding to the nodes at which this
        boundary condition applies.'''

        return op2.Subset(self._function_space.node_set, self.nodes)

    @PETSc.Log.EventDecorator()
    def zero(self, r):
        r"""Zero the boundary condition nodes on ``r``.

        :arg r: a :class:`.Function` to which the
            boundary condition should be applied.

        """
        if isinstance(r, matrix.MatrixBase):
            raise NotImplementedError("Zeroing bcs on a Matrix is not supported")

        for idx in self._indices:
            r = r.sub(idx)
        try:
            r.dat.zero(subset=self.node_set)
        except exceptions.MapValueError:
            raise RuntimeError("%r defined on incompatible FunctionSpace!" % r)

    @PETSc.Log.EventDecorator()
    def set(self, r, val):
        r"""Set the boundary nodes to a prescribed (external) value.
        :arg r: the :class:`Function` to which the value should be applied.
        :arg val: the prescribed value.
        """

        for idx in self._indices:
            r = r.sub(idx)
        if not np.isscalar(val):
            for idx in self._indices:
                val = val.sub(idx)
        r.assign(val, subset=self.node_set)

    def integrals(self):
        raise NotImplementedError("integrals() method has to be overwritten")

    @PETSc.Log.EventDecorator()
    def as_subspace(self, field, V, use_split):
        fs = self._function_space
        if fs.parent is not None and isinstance(fs.parent.ufl_element(), VectorElement):
            index = fs.parent.index
        else:
            index = fs.index
        cmpt = fs.component
        # TODO: need to test this logic
        field_renumbering = dict([f, i] for i, f in enumerate(field))
        if index in field:
            if len(field) == 1:
                W = V
            else:
                W = V.subfunctions[field_renumbering[index]] if use_split else V.sub(field_renumbering[index])
            if cmpt is not None:
                W = W.sub(cmpt)
            return W

    def sorted_equation_bcs(self):
        return []

    def increment_bc_depth(self):
        # Increment _bc_depth by 1
        self._bc_depth += 1
        for bc in itertools.chain(*self.bcs):
            bc._bc_depth += 1

    def extract_forms(self, form_type):
        # Return boundary condition objects actually used in assembly.
        raise NotImplementedError("Method to extract form objects not implemented.")


[docs] class DirichletBC(BCBase, DirichletBCMixin): r'''Implementation of a strong Dirichlet boundary condition. .. note: This uses facet markers in the domain, so may be used to applied strong boundary conditions to interior facets (if they have an appropriate mesh marker). The "on_boundary" string only applies to the exterior boundaries of the domain. :arg V: the :class:`.FunctionSpace` on which the boundary condition should be applied. :arg g: the boundary condition values. This can be a :class:`.Function` on ``V``, or a UFL expression that can be interpolated into ``V``, for example, a :class:`.Constant` , an iterable of literal constants (converted to a UFL expression), or a literal constant which can be pointwise evaluated at the nodes of ``V``. :arg sub_domain: the integer id(s) of the boundary region over which the boundary condition should be applied. The string "on_boundary" may be used to indicate all of the boundaries of the domain. In the case of extrusion the ``top`` and ``bottom`` strings are used to flag the bcs application on the top and bottom boundaries of the extruded mesh respectively. :arg method: the method for determining boundary nodes. DEPRECATED. The only way boundary nodes are identified is by topological association. ''' @DirichletBCMixin._ad_annotate_init def __init__(self, V, g, sub_domain, method=None): if method == "geometric": raise NotImplementedError("'geometric' bcs are no longer implemented. Please enforce them weakly") if method not in {None, "topological"}: raise ValueError(f"Unhandled boundary condition method '{method}'") if method is not None: import warnings with warnings.catch_warnings(): warnings.simplefilter('always', DeprecationWarning) warnings.warn("Selecting a bcs method is deprecated. Only topological association is supported", DeprecationWarning) if len(V.boundary_set) and sub_domain not in V.boundary_set: raise ValueError(f"Sub-domain {sub_domain} not in the boundary set of the restricted space.") super().__init__(V, sub_domain) if len(V) > 1: raise ValueError("Cannot apply boundary conditions on mixed spaces directly.\n" "Apply to the components by indexing the space with .sub(...)") self.function_arg = g self._original_arg = g self.is_linear = True self.Jp_eq_J = True
[docs] def dirichlet_bcs(self): yield self
@property def function_arg(self): '''The value of this boundary condition.''' if hasattr(self, "_function_arg_update"): self._function_arg_update() return self._function_arg
[docs] @PETSc.Log.EventDecorator() def reconstruct(self, field=None, V=None, g=None, sub_domain=None, use_split=False): fs = self.function_space() if V is None: V = fs if g is None: g = self._original_arg if sub_domain is None: sub_domain = self.sub_domain if field is not None: assert V is not None, "`V` can not be `None` when `field` is not `None`" V = self.as_subspace(field, V, use_split) if V is None: return if V == fs and \ V.parent == fs.parent and \ V.index == fs.index and \ (V.parent is None or V.parent.parent == fs.parent.parent) and \ (V.parent is None or V.parent.index == fs.parent.index) and \ g == self._original_arg and \ sub_domain == self.sub_domain: return self return type(self)(V, g, sub_domain)
@function_arg.setter def function_arg(self, g): '''Set the value of this boundary condition.''' try: # Clear any previously set update function del self._function_arg_update except AttributeError: pass if isinstance(g, firedrake.Function) and g.ufl_element().family() != "Real": if g.function_space() != self.function_space(): raise RuntimeError("%r is defined on incompatible FunctionSpace!" % g) self._function_arg = g elif isinstance(g, ufl.classes.Zero): if g.ufl_shape and g.ufl_shape != self.function_space().ufl_element().value_shape: raise ValueError(f"Provided boundary value {g} does not match shape of space") # Special case. Scalar zero for direct Function.assign. self._function_arg = g elif isinstance(g, ufl.classes.Expr): if g.ufl_shape != self.function_space().ufl_element().value_shape: raise RuntimeError(f"Provided boundary value {g} does not match shape of space") try: self._function_arg = firedrake.Function(self.function_space()) # Use `Interpolator` instead of assembling an `Interpolate` form # as the expression compilation needs to happen at this stage to # determine if we should use interpolation or projection # -> e.g. interpolation may not be supported for the element. self._function_arg_update = firedrake.Interpolator(g, self._function_arg)._interpolate except (NotImplementedError, AttributeError): # Element doesn't implement interpolation self._function_arg = firedrake.Function(self.function_space()).project(g) self._function_arg_update = firedrake.Projector(g, self._function_arg).project else: try: g = as_ufl(g) self._function_arg = g except ValueError: try: # Recurse to handle this through interpolation. self.function_arg = as_ufl(as_tensor(g)) except ValueError: raise ValueError(f"{g} is not a valid DirichletBC expression")
[docs] def homogenize(self): '''Convert this boundary condition into a homogeneous one. Set the value to zero. ''' self.function_arg = ufl.zero(self.function_arg.ufl_shape)
[docs] def restore(self): '''Restore the original value of this boundary condition. This uses the value passed on instantiation of the object.''' self.function_arg = self._original_arg
[docs] def set_value(self, val): '''Set the value of this boundary condition. :arg val: The boundary condition values. See :class:`.DirichletBC` for valid values. ''' self.function_arg = val self._original_arg = val
[docs] @PETSc.Log.EventDecorator('ApplyBC') @DirichletBCMixin._ad_annotate_apply def apply(self, r, u=None): r"""Apply this boundary condition to ``r``. :arg r: a :class:`.Function` or :class:`.Matrix` to which the boundary condition should be applied. :arg u: an optional current state. If ``u`` is supplied then ``r`` is taken to be a residual and the boundary condition nodes are set to the value ``u-bc``. Supplying ``u`` has no effect if ``r`` is a :class:`.Matrix` rather than a :class:`.Function` . If ``u`` is absent, then the boundary condition nodes of ``r`` are set to the boundary condition values. If ``r`` is a :class:`.Matrix` , it will be assembled with a 1 on diagonals where the boundary condition applies and 0 in the corresponding rows and columns. """ if isinstance(r, matrix.MatrixBase): raise NotImplementedError("Capability to delay bc application has been dropped. Use assemble(a, bcs=bcs, ...) to obtain a fully assembled matrix") fs = self._function_space # Check that u matches r if supplied if u and u.function_space() != r.function_space(): raise RuntimeError("Mismatching spaces for %s and %s" % (r, u)) # Check that r's function space matches the BC's function # space. Run up through parents (IndexedFunctionSpace or # ComponentFunctionSpace) until we either match the function space, or # else we have a mismatch and raise an error. while True: if fs == r.function_space(): break elif fs.parent is not None: fs = fs.parent else: raise RuntimeError("%r defined on incompatible FunctionSpace!" % r) # Apply the indexing to r (and u if supplied) for idx in self._indices: r = r.sub(idx) if u: u = u.sub(idx) if u: r.assign(u - self.function_arg, subset=self.node_set) else: r.assign(self.function_arg, subset=self.node_set)
[docs] def integrals(self): return []
[docs] def extract_form(self, form_type): # DirichletBC is directly used in assembly. return self
def _as_nonlinear_variational_problem_arg(self): return self
[docs] class EquationBC(object): r'''Construct and store EquationBCSplit objects (for `F`, `J`, and `Jp`). :param eq: the linear/nonlinear form equation :param u: the :class:`.Function` to solve for :arg sub_domain: see :class:`.DirichletBC` . :arg bcs: a list of :class:`.DirichletBC` s and/or :class:`.EquationBC` s to be applied to this boundary condition equation (optional) :param J: the Jacobian for this boundary equation (optional) :param Jp: a form used for preconditioning the linear system, optional, if not supplied then the Jacobian itself will be used. :arg V: the :class:`.FunctionSpace` on which the equation boundary condition is applied (optional) :arg is_linear: this flag is used only with the `reconstruct` method :arg Jp_eq_J: this flag is used only with the `reconstruct` method ''' @PETSc.Log.EventDecorator() def __init__(self, *args, bcs=None, J=None, Jp=None, V=None, is_linear=False, Jp_eq_J=False): from firedrake.variational_solver import check_pde_args, is_form_consistent if isinstance(args[0], ufl.classes.Equation): # initial construction from equation eq = args[0] u = args[1] sub_domain = args[2] if V is None: V = eq.lhs.arguments()[0].function_space() bcs = solving._extract_bcs(bcs) # Jp_eq_J is progressively evaluated as the tree is constructed self.Jp_eq_J = Jp is None and all([bc.Jp_eq_J for bc in bcs]) # linear if isinstance(eq.lhs, ufl.Form) and isinstance(eq.rhs, ufl.Form): J = eq.lhs Jp = Jp or J if eq.rhs == 0: F = ufl_expr.action(J, u) else: if not isinstance(eq.rhs, (ufl.Form, slate.slate.TensorBase)): raise TypeError("Provided BC RHS is a '%s', not a Form or Slate Tensor" % type(eq.rhs).__name__) if len(eq.rhs.arguments()) != 1: raise ValueError("Provided BC RHS is not a linear form") F = ufl_expr.action(J, u) - eq.rhs self.is_linear = True # nonlinear else: if eq.rhs != 0: raise TypeError("RHS of a nonlinear form equation has to be 0") F = eq.lhs J = J or ufl_expr.derivative(F, u) Jp = Jp or J self.is_linear = False # Check form style consistency is_form_consistent(self.is_linear, bcs) # Argument checking check_pde_args(F, J, Jp) # EquationBCSplit objects for `F`, `J`, and `Jp` self._F = EquationBCSplit(F, u, sub_domain, bcs=[bc if isinstance(bc, DirichletBC) else bc._F for bc in bcs], V=V) self._J = EquationBCSplit(J, u, sub_domain, bcs=[bc if isinstance(bc, DirichletBC) else bc._J for bc in bcs], V=V) self._Jp = EquationBCSplit(Jp, u, sub_domain, bcs=[bc if isinstance(bc, DirichletBC) else bc._Jp for bc in bcs], V=V) elif all(isinstance(args[i], EquationBCSplit) for i in range(3)): # reconstruction for splitting `solving_utils.split` self.Jp_eq_J = Jp_eq_J self.is_linear = is_linear self._F = args[0] self._J = args[1] self._Jp = args[2] else: raise TypeError("Wrong EquationBC arguments") def __iter__(self): yield from itertools.chain(self._F)
[docs] def dirichlet_bcs(self): # _F, _J, and _Jp all have the same DirichletBCs yield from self._F.dirichlet_bcs()
[docs] def extract_form(self, form_type): r"""Return ``EquationBCSplit`` associated with the given 'form_type'. :arg form_type: Form to extract; 'F', 'J', or 'Jp'. """ if form_type not in {"F", "J", "Jp"}: raise ValueError("Unknown form_type: 'form_type' must be 'F', 'J', or 'Jp'.") else: return getattr(self, f"_{form_type}")
[docs] @PETSc.Log.EventDecorator() def reconstruct(self, V, subu, u, field, is_linear): _F = self._F.reconstruct(field=field, V=V, subu=subu, u=u) _J = self._J.reconstruct(field=field, V=V, subu=subu, u=u) _Jp = self._Jp.reconstruct(field=field, V=V, subu=subu, u=u) if all([_F is not None, _J is not None, _Jp is not None]): return EquationBC(_F, _J, _Jp, Jp_eq_J=self.Jp_eq_J, is_linear=is_linear)
def _as_nonlinear_variational_problem_arg(self): return self
class EquationBCSplit(BCBase): r'''Class for a BC tree that stores/manipulates either `F`, `J`, or `Jp`. :param form: the linear/nonlinear form: `F`, `J`, or `Jp`. :param u: the :class:`.Function` to solve for :arg sub_domain: see :class:`.DirichletBC` . :arg bcs: a list of :class:`.DirichletBC` s and/or :class:`.EquationBC` s to be applied to this boundary condition equation (optional) :arg V: the :class:`.FunctionSpace` on which the equation boundary condition is applied (optional) ''' def __init__(self, form, u, sub_domain, bcs=None, V=None): # This nested structure will enable recursive application of boundary conditions. # # def _assemble(..., bcs, ...) # ... # for bc in bcs: # # boundary conditions for boundary conditions for boun... # ... _assemble(bc.f, bc.bcs, ...) # ... self.f = form self.u = u if V is None: V = self.f.arguments()[0].function_space() super(EquationBCSplit, self).__init__(V, sub_domain) # overwrite bcs self.bcs = bcs or [] for bc in self.bcs: bc.increment_bc_depth() def dirichlet_bcs(self): for bc in self.bcs: yield from bc.dirichlet_bcs() def sorted_equation_bcs(self): # Create a list of EquationBCSplit objects sorted_ebcs = list(bc for bc in itertools.chain(*self.bcs) if isinstance(bc, EquationBCSplit)) # Sort this list to avoid `self._y` copys in matrix_free/operators.py sorted_ebcs.sort(key=lambda bc: bc._bc_depth, reverse=True) return sorted_ebcs def integrals(self): return self.f.integrals() def add(self, bc): if not isinstance(bc, (DirichletBC, EquationBCSplit)): raise TypeError("EquationBCSplit.add expects an instance of DirichletBC or EquationBCSplit.") bc.increment_bc_depth() self.bcs.append(bc) @PETSc.Log.EventDecorator() def reconstruct(self, field=None, V=None, subu=None, u=None, row_field=None, col_field=None, action_x=None, use_split=False): subu = subu or self.u row_field = row_field or field col_field = col_field or field # define W and form if field is None: # Returns self W = self._function_space form = self.f else: assert V is not None, "`V` can not be `None` when `field` is not `None`" W = self.as_subspace(field, V, use_split) if W is None: return rank = len(self.f.arguments()) splitter = ExtractSubBlock() if rank == 1: form = splitter.split(self.f, argument_indices=(row_field, )) elif rank == 2: form = splitter.split(self.f, argument_indices=(row_field, col_field)) if u is not None: form = firedrake.replace(form, {self.u: u}) if action_x is not None: assert len(form.arguments()) == 2, "rank of self.f must be 2 when using action_x parameter" form = ufl_expr.action(form, action_x) ebc = EquationBCSplit(form, subu, self.sub_domain, V=W) for bc in self.bcs: if isinstance(bc, DirichletBC): ebc.add(bc.reconstruct(V=W, g=bc.function_arg, sub_domain=bc.sub_domain, use_split=use_split)) elif isinstance(bc, EquationBCSplit): bc_temp = bc.reconstruct(field=field, V=V, subu=subu, u=u, row_field=row_field, col_field=col_field, action_x=action_x, use_split=use_split) # Due to the "if index", bc_temp can be None if bc_temp is not None: ebc.add(bc_temp) return ebc def _as_nonlinear_variational_problem_arg(self): # NonlinearVariationalProblem expects EquationBC, not EquationBCSplit. # -- This method is required when NonlinearVariationalProblem is constructed inside PC. if len(self.f.arguments()) != 2: raise NotImplementedError(f"Not expecting a form of rank {len(self.f.arguments())} (!= 2)") J = self.f Vcol = J.arguments()[-1].function_space() u = firedrake.Function(Vcol) F = ufl_expr.action(J, u) Vrow = self._function_space sub_domain = self.sub_domain bcs = tuple(bc._as_nonlinear_variational_problem_arg() for bc in self.bcs) return EquationBC(F == 0, u, sub_domain, bcs=bcs, J=J, V=Vrow)
[docs] @PETSc.Log.EventDecorator() def homogenize(bc): r"""Create a homogeneous version of a :class:`.DirichletBC` object and return it. If ``bc`` is an iterable containing one or more :class:`.DirichletBC` objects, then return a list of the homogeneous versions of those :class:`.DirichletBC` s. :arg bc: a :class:`.DirichletBC` , or iterable object comprising :class:`.DirichletBC` (s). """ if isinstance(bc, (tuple, list)): lst = [] for i in bc: if not isinstance(i, DirichletBC): raise TypeError("homogenize only makes sense for DirichletBCs") lst.append(DirichletBC(i.function_space(), 0, i.sub_domain)) return lst elif isinstance(bc, DirichletBC): return DirichletBC(bc.function_space(), 0, bc.sub_domain) else: raise TypeError("homogenize only takes a DirichletBC or a list/tuple of DirichletBCs")