Source code for firedrake.adjoint_utils.blocks.solving

import numpy
import ufl
from ufl import replace
from ufl.formatting.ufl2unicode import ufl2unicode
from enum import Enum

from pyadjoint import Block, stop_annotating, get_working_tape
from pyadjoint.enlisting import Enlist
import firedrake
from firedrake.adjoint_utils.checkpointing import maybe_disk_checkpoint
from .block_utils import isconstant


[docs] def extract_subfunction(u, V): """If V is a subspace of the function-space of u, return the component of u that is in that subspace.""" if V.index is not None: # V is an indexed subspace of a MixedFunctionSpace return u.sub(V.index) elif V.component is not None: # V is a vector component subspace. # The vector functionspace V.parent may itself be a subspace # so call this function recursively return extract_subfunction(u, V.parent).sub(V.component) else: return u
[docs] class Solver(Enum): """Enum for solver types.""" FORWARD = 0 ADJOINT = 1
[docs] class GenericSolveBlock(Block): pop_kwargs_keys = ["adj_cb", "adj_bdy_cb", "adj2_cb", "adj2_bdy_cb", "forward_args", "forward_kwargs", "adj_args", "adj_kwargs"] def __init__(self, lhs, rhs, func, bcs, *args, **kwargs): super().__init__(ad_block_tag=kwargs.pop('ad_block_tag', None)) self.adj_cb = kwargs.pop("adj_cb", None) self.adj_bdy_cb = kwargs.pop("adj_bdy_cb", None) self.adj2_cb = kwargs.pop("adj2_cb", None) self.adj2_bdy_cb = kwargs.pop("adj2_bdy_cb", None) self.forward_args = [] self.forward_kwargs = {} self.adj_args = [] self.adj_kwargs = {} self.assemble_kwargs = {} # Equation LHS self.lhs = lhs # Equation RHS self.rhs = rhs # Solution function self.func = func self.function_space = self.func.function_space() # Boundary conditions self.bcs = [] if bcs is not None: self.bcs = Enlist(bcs) if isinstance(self.lhs, ufl.Form) and isinstance(self.rhs, (ufl.Form, ufl.Cofunction)): self.linear = True for c in self.rhs.coefficients(): self.add_dependency(c, no_duplicates=True) else: self.linear = False for c in self.lhs.coefficients(): self.add_dependency(c, no_duplicates=True) for bc in self.bcs: self.add_dependency(bc, no_duplicates=True) mesh = self.lhs.ufl_domain() self.add_dependency(mesh) self._init_solver_parameters(args, kwargs) def _init_solver_parameters(self, args, kwargs): self.forward_args = kwargs.pop("forward_args", []) self.forward_kwargs = kwargs.pop("forward_kwargs", {}) self.adj_args = kwargs.pop("adj_args", []) self.adj_kwargs = kwargs.pop("adj_kwargs", {}) self.assemble_kwargs = {} def __str__(self): return "solve({} = {})".format(ufl2unicode(self.lhs), ufl2unicode(self.rhs)) def _create_F_form(self): # Process the equation forms, replacing values with checkpoints, # and gathering lhs and rhs in one single form. if self.linear: tmp_u = firedrake.Function(self.function_space) F_form = firedrake.action(self.lhs, tmp_u) - self.rhs else: tmp_u = self.func F_form = self.lhs replace_map = self._replace_map(F_form) replace_map[tmp_u] = self.get_outputs()[0].saved_output return ufl.replace(F_form, replace_map) def _homogenize_bcs(self): bcs = [] for bc in self.bcs: if isinstance(bc, firedrake.DirichletBC): bc = bc.reconstruct(g=0) bcs.append(bc) return bcs def _create_initial_guess(self): return firedrake.Function(self.function_space) def _recover_bcs(self): bcs = [] for block_variable in self.get_dependencies(): c = block_variable.output c_rep = block_variable.saved_output if isinstance(c, firedrake.DirichletBC): bcs.append(c_rep) return bcs def _replace_map(self, form): replace_coeffs = {} for block_variable in self.get_dependencies(): coeff = block_variable.output if coeff in form.coefficients(): replace_coeffs[coeff] = block_variable.saved_output return replace_coeffs def _replace_form(self, form, func=None): """Replace the form coefficients with checkpointed values func represents the initial guess if relevant. """ replace_map = self._replace_map(form) if func is not None and self.func in replace_map: firedrake.Function.assign(func, replace_map[self.func]) replace_map[self.func] = func return ufl.replace(form, replace_map) def _should_compute_boundary_adjoint(self, relevant_dependencies): # Check if DirichletBC derivative is relevant bdy = False for _, dep in relevant_dependencies: if isinstance(dep.output, firedrake.DirichletBC): bdy = True break return bdy @property def adj_sol(self): return self.adj_state
[docs] def prepare_evaluate_adj(self, inputs, adj_inputs, relevant_dependencies): fwd_block_variable = self.get_outputs()[0] u = fwd_block_variable.output dJdu = adj_inputs[0] F_form = self._create_F_form() dFdu = firedrake.derivative( F_form, fwd_block_variable.saved_output, firedrake.TrialFunction( u.function_space() ) ) dFdu_form = firedrake.adjoint(dFdu) dJdu = dJdu.copy() compute_bdy = self._should_compute_boundary_adjoint( relevant_dependencies ) adj_sol, adj_sol_bdy = self._assemble_and_solve_adj_eq( dFdu_form, dJdu, compute_bdy ) self.adj_state = adj_sol if self.adj_cb is not None: self.adj_cb(adj_sol) if self.adj_bdy_cb is not None and compute_bdy: self.adj_bdy_cb(adj_sol_bdy) r = {} r["form"] = F_form r["adj_sol"] = adj_sol r["adj_sol_bdy"] = adj_sol_bdy return r
def _assemble_dFdu_adj(self, dFdu_adj_form, **kwargs): return firedrake.assemble(dFdu_adj_form, **kwargs) def _assemble_and_solve_adj_eq(self, dFdu_adj_form, dJdu, compute_bdy): dJdu_copy = dJdu.copy() # Homogenize and apply boundary conditions on adj_dFdu and dJdu. bcs = self._homogenize_bcs() dFdu = firedrake.assemble(dFdu_adj_form, bcs=bcs, **self.assemble_kwargs) for bc in bcs: bc.zero(dJdu) adj_sol = firedrake.Function(self.function_space) firedrake.solve( dFdu, adj_sol, dJdu, *self.adj_args, **self.adj_kwargs ) adj_sol_bdy = None if compute_bdy: adj_sol_bdy = self._compute_adj_bdy( adj_sol, adj_sol_bdy, dFdu_adj_form, dJdu_copy) return adj_sol, adj_sol_bdy def _compute_adj_bdy(self, adj_sol, adj_sol_bdy, dFdu_adj_form, dJdu): adj_sol_bdy = firedrake.assemble(dJdu - firedrake.action(dFdu_adj_form, adj_sol)) return adj_sol_bdy.riesz_representation("l2")
[docs] def evaluate_adj_component(self, inputs, adj_inputs, block_variable, idx, prepared=None): if not self.linear and self.func == block_variable.output: # We are not able to calculate derivatives wrt initial guess. return None F_form = prepared["form"] adj_sol = prepared["adj_sol"] adj_sol_bdy = prepared["adj_sol_bdy"] c = block_variable.output c_rep = block_variable.saved_output if isconstant(c): mesh = F_form.ufl_domain() trial_function = firedrake.TrialFunction( c._ad_function_space(mesh) ) elif isinstance(c, (firedrake.Function, firedrake.Cofunction)): trial_function = firedrake.TrialFunction(c.function_space()) elif isinstance(c, firedrake.DirichletBC): tmp_bc = c.reconstruct( g=extract_subfunction(adj_sol_bdy, c.function_space()) ) return [tmp_bc] elif isinstance(c, firedrake.MeshGeometry): # Using CoordinateDerivative requires us to do action before # differentiating, might change in the future. F_form_tmp = firedrake.action(F_form, adj_sol) X = firedrake.SpatialCoordinate(c_rep) dFdm = firedrake.derivative( -F_form_tmp, X, firedrake.TestFunction(c._ad_function_space()) ) if dFdm == 0: return firedrake.Function(c._ad_function_space().dual()) dFdm = firedrake.assemble(dFdm, **self.assemble_kwargs) return dFdm dFdm = -firedrake.derivative(F_form, c_rep, trial_function) if isinstance(dFdm, ufl.Form): dFdm = firedrake.adjoint(dFdm) dFdm = firedrake.action(dFdm, adj_sol) else: dFdm = dFdm(adj_sol) dFdm = firedrake.assemble(dFdm, **self.assemble_kwargs) return dFdm
[docs] def prepare_evaluate_tlm(self, inputs, tlm_inputs, relevant_outputs): fwd_block_variable = self.get_outputs()[0] u = fwd_block_variable.output F_form = self._create_F_form() # Obtain dFdu. dFdu = firedrake.derivative( F_form, fwd_block_variable.saved_output, firedrake.TrialFunction(u.function_space()) ) return { "form": F_form, "dFdu": dFdu }
[docs] def evaluate_tlm_component(self, inputs, tlm_inputs, block_variable, idx, prepared=None): F_form = prepared["form"] dFdu = prepared["dFdu"] V = self.get_outputs()[idx].output.function_space() bcs = [] dFdm = 0. for block_variable in self.get_dependencies(): tlm_value = block_variable.tlm_value c = block_variable.output c_rep = block_variable.saved_output if isinstance(c, firedrake.DirichletBC): if tlm_value is None: bcs.append(c.reconstruct(g=0)) else: bcs.append(tlm_value) continue elif isinstance(c, firedrake.MeshGeometry): X = firedrake.SpatialCoordinate(c) c_rep = X if tlm_value is None: continue if c == self.func and not self.linear: continue dFdm += firedrake.derivative(-F_form, c_rep, tlm_value) if isinstance(dFdm, float): v = dFdu.arguments()[0] dFdm = firedrake.inner( firedrake.Constant(numpy.zeros(v.ufl_shape)), v ) * firedrake.dx dFdm = ufl.algorithms.expand_derivatives(dFdm) dFdm = firedrake.assemble(dFdm) dudm = firedrake.Function(V) return self._assemble_and_solve_tlm_eq( firedrake.assemble(dFdu, bcs=bcs, **self.assemble_kwargs), dFdm, dudm, bcs )
def _assemble_and_solve_tlm_eq(self, dFdu, dFdm, dudm, bcs): return self._assembled_solve(dFdu, dFdm, dudm, bcs) def _assemble_soa_eq_rhs(self, dFdu_form, adj_sol, hessian_input, d2Fdu2): # Start piecing together the rhs of the soa equation b = hessian_input.copy() if len(d2Fdu2.integrals()) > 0: b_form = firedrake.action(firedrake.adjoint(d2Fdu2), adj_sol) else: b_form = d2Fdu2 for bo in self.get_dependencies(): c = bo.output c_rep = bo.saved_output tlm_input = bo.tlm_value if (c == self.func and not self.linear) or tlm_input is None: continue if isinstance(c, firedrake.MeshGeometry): X = firedrake.SpatialCoordinate(c) dFdu_adj = firedrake.action(firedrake.adjoint(dFdu_form), adj_sol) d2Fdudm = ufl.algorithms.expand_derivatives( firedrake.derivative(dFdu_adj, X, tlm_input)) if len(d2Fdudm.integrals()) > 0: b_form += d2Fdudm elif not isinstance(c, firedrake.DirichletBC): dFdu_adj = firedrake.action(firedrake.adjoint(dFdu_form), adj_sol) b_form += firedrake.derivative(dFdu_adj, c_rep, tlm_input) b_form = ufl.algorithms.expand_derivatives(b_form) if len(b_form.integrals()) > 0: b -= firedrake.assemble(b_form) return b def _assemble_and_solve_soa_eq(self, dFdu_form, adj_sol, hessian_input, d2Fdu2, compute_bdy): b = self._assemble_soa_eq_rhs(dFdu_form, adj_sol, hessian_input, d2Fdu2) dFdu_form = firedrake.adjoint(dFdu_form) adj_sol2, adj_sol2_bdy = self._assemble_and_solve_adj_eq(dFdu_form, b, compute_bdy) if self.adj2_cb is not None: self.adj2_cb(adj_sol2) if self.adj2_bdy_cb is not None and compute_bdy: self.adj2_bdy_cb(adj_sol2_bdy) return adj_sol2, adj_sol2_bdy
[docs] def prepare_evaluate_hessian(self, inputs, hessian_inputs, adj_inputs, relevant_dependencies): # First fetch all relevant values fwd_block_variable = self.get_outputs()[0] hessian_input = hessian_inputs[0] tlm_output = fwd_block_variable.tlm_value if hessian_input is None: return if tlm_output is None: return F_form = self._create_F_form() # Using the equation Form derive dF/du, d^2F/du^2 * du/dm * direction. dFdu_form = firedrake.derivative(F_form, fwd_block_variable.saved_output) d2Fdu2 = ufl.algorithms.expand_derivatives( firedrake.derivative(dFdu_form, fwd_block_variable.saved_output, tlm_output)) adj_sol = self.adj_state if adj_sol is None: raise RuntimeError("Hessian computation was run before adjoint.") bdy = self._should_compute_boundary_adjoint(relevant_dependencies) adj_sol2, adj_sol2_bdy = self._assemble_and_solve_soa_eq( dFdu_form, adj_sol, hessian_input, d2Fdu2, bdy ) r = {} r["adj_sol2"] = adj_sol2 r["adj_sol2_bdy"] = adj_sol2_bdy r["form"] = F_form r["adj_sol"] = adj_sol return r
[docs] def evaluate_hessian_component(self, inputs, hessian_inputs, adj_inputs, block_variable, idx, relevant_dependencies, prepared=None): c = block_variable.output if c == self.func and not self.linear: return None adj_sol2 = prepared["adj_sol2"] adj_sol2_bdy = prepared["adj_sol2_bdy"] F_form = prepared["form"] adj_sol = prepared["adj_sol"] fwd_block_variable = self.get_outputs()[0] tlm_output = fwd_block_variable.tlm_value c_rep = block_variable.saved_output # If m = DirichletBC then d^2F(u,m)/dm^2 = 0 and d^2F(u,m)/dudm = 0, # so we only have the term dF(u,m)/dm * adj_sol2 if isinstance(c, firedrake.DirichletBC): tmp_bc = c.reconstruct( g=extract_subfunction(adj_sol2_bdy, c.function_space()) ) return [tmp_bc] if isconstant(c_rep): mesh = F_form.ufl_domain() W = c._ad_function_space(mesh) elif isinstance(c, firedrake.MeshGeometry): X = firedrake.SpatialCoordinate(c) W = c._ad_function_space() else: W = c.function_space() dc = firedrake.TestFunction(W) form_adj = firedrake.action(F_form, adj_sol) form_adj2 = firedrake.action(F_form, adj_sol2) if isinstance(c, firedrake.MeshGeometry): dFdm_adj = firedrake.derivative(form_adj, X, dc) dFdm_adj2 = firedrake.derivative(form_adj2, X, dc) else: dFdm_adj = firedrake.derivative(form_adj, c_rep, dc) dFdm_adj2 = firedrake.derivative(form_adj2, c_rep, dc) # TODO: Old comment claims this might break on split. Confirm if true # or not. d2Fdudm = ufl.algorithms.expand_derivatives( firedrake.derivative(dFdm_adj, fwd_block_variable.saved_output, tlm_output)) d2Fdm2 = 0 # We need to add terms from every other dependency # i.e. the terms d^2F/dm_1dm_2 for _, bv in relevant_dependencies: c2 = bv.output c2_rep = bv.saved_output if isinstance(c2, firedrake.DirichletBC): continue tlm_input = bv.tlm_value if tlm_input is None: continue if c2 == self.func and not self.linear: continue # TODO: If tlm_input is a Sum, this crashes in some instances? if isinstance(c2_rep, firedrake.MeshGeometry): X = firedrake.SpatialCoordinate(c2_rep) d2Fdm2 += ufl.algorithms.expand_derivatives( firedrake.derivative(dFdm_adj, X, tlm_input) ) else: d2Fdm2 += ufl.algorithms.expand_derivatives( firedrake.derivative(dFdm_adj, c2_rep, tlm_input) ) hessian_form = ufl.algorithms.expand_derivatives( d2Fdm2 + dFdm_adj2 + d2Fdudm ) hessian_output = 0 if not hessian_form.empty(): hessian_output = firedrake.assemble(hessian_form) hessian_output *= -1. return hessian_output
[docs] def prepare_recompute_component(self, inputs, relevant_outputs): return self._replace_recompute_form()
def _replace_recompute_form(self): func = self._create_initial_guess() bcs = self._recover_bcs() lhs = self._replace_form(self.lhs, func=func) rhs = 0 if self.linear: rhs = self._replace_form(self.rhs) return lhs, rhs, func, bcs def _forward_solve(self, lhs, rhs, func, bcs): firedrake.solve(lhs == rhs, func, bcs, *self.forward_args, **self.forward_kwargs) return func def _assembled_solve(self, lhs, rhs, func, bcs, **kwargs): rhs_func = rhs.riesz_representation(riesz_map="l2") for bc in bcs: bc.apply(rhs_func) rhs.assign(rhs_func.riesz_representation(riesz_map="l2")) firedrake.solve(lhs, func, rhs, **kwargs) return func
[docs] def recompute_component(self, inputs, block_variable, idx, prepared): lhs = prepared[0] rhs = prepared[1] func = prepared[2] bcs = prepared[3] result = self._forward_solve(lhs, rhs, func, bcs) if isinstance(block_variable.checkpoint, firedrake.Function): result = block_variable.checkpoint.assign(result) return maybe_disk_checkpoint(result)
[docs] def solve_init_params(self, args, kwargs, varform): if len(self.forward_args) <= 0: self.forward_args = args if len(self.forward_kwargs) <= 0: self.forward_kwargs = kwargs.copy() if len(self.adj_args) <= 0: self.adj_args = self.forward_args if len(self.adj_kwargs) <= 0: self.adj_kwargs = self.forward_kwargs.copy() if varform: if "J" in self.forward_kwargs: self.adj_kwargs["J"] = firedrake.adjoint( self.forward_kwargs["J"] ) if "Jp" in self.forward_kwargs: self.adj_kwargs["Jp"] = firedrake.adjoint( self.forward_kwargs["Jp"] ) if "M" in self.forward_kwargs: raise NotImplementedError( "Annotation of adaptive solves not implemented." ) self.adj_kwargs.pop("appctx", None) if "mat_type" in kwargs.get("solver_parameters", {}): self.assemble_kwargs["mat_type"] = \ kwargs["solver_parameters"]["mat_type"] if varform: if "appctx" in kwargs: self.assemble_kwargs["appctx"] = kwargs["appctx"]
[docs] class SolveLinearSystemBlock(GenericSolveBlock): def __init__(self, A, u, b, *args, **kwargs): lhs = A.form func = u.function rhs = b.form bcs = A.bcs if hasattr(A, "bcs") else [] super().__init__(lhs, rhs, func, bcs, *args, **kwargs) # Set up parameters initialization self.ident_zeros_tol = \ A.ident_zeros_tol if hasattr(A, "ident_zeros_tol") else None self.assemble_system = \ A.assemble_system if hasattr(A, "assemble_system") else False def _init_solver_parameters(self, args, kwargs): super()._init_solver_parameters(args, kwargs) solve_init_params(self, args, kwargs, varform=False)
[docs] class SolveVarFormBlock(GenericSolveBlock): def __init__(self, equation, func, bcs=[], *args, **kwargs): lhs = equation.lhs rhs = equation.rhs super().__init__(lhs, rhs, func, bcs, *args, **kwargs) def _init_solver_parameters(self, args, kwargs): super()._init_solver_parameters(args, kwargs) solve_init_params(self, args, kwargs, varform=True)
[docs] class NonlinearVariationalSolveBlock(GenericSolveBlock): def __init__(self, equation, func, bcs, adj_cache, problem_J, solver_params, solver_kwargs, **kwargs): lhs = equation.lhs rhs = equation.rhs self._adj_cache = adj_cache self._dFdm_cache = adj_cache.setdefault("dFdm_cache", {}) self.problem_J = problem_J self.solver_params = solver_params.copy() self.solver_kwargs = solver_kwargs super().__init__(lhs, rhs, func, bcs, **{**solver_kwargs, **kwargs}) if self.problem_J is not None: for coeff in self.problem_J.coefficients(): self.add_dependency(coeff, no_duplicates=True) def _init_solver_parameters(self, args, kwargs): super()._init_solver_parameters(args, kwargs) solve_init_params(self, args, kwargs, varform=True)
[docs] def recompute_component(self, inputs, block_variable, idx, prepared): tape = get_working_tape() if self._ad_solvers["recompute_count"] == tape.recompute_count - 1: # Update how many times the block has been recomputed. self._ad_solvers["recompute_count"] = tape.recompute_count if self._ad_solvers["forward_nlvs"]._problem._constant_jacobian: self._ad_solvers["forward_nlvs"].invalidate_jacobian() self._ad_solvers["update_adjoint"] = True return super().recompute_component(inputs, block_variable, idx, prepared)
def _forward_solve(self, lhs, rhs, func, bcs, **kwargs): self._ad_solver_replace_forms() self._ad_solvers["forward_nlvs"].parameters.update(self.solver_params) self._ad_solvers["forward_nlvs"].solve() func.assign(self._ad_solvers["forward_nlvs"]._problem.u) return func def _adjoint_solve(self, dJdu, compute_bdy): dJdu_copy = dJdu.copy() # Homogenize and apply boundary conditions on adj_dFdu and dJdu. for bc in self.bcs: bc.zero(dJdu) if ( self._ad_solvers["forward_nlvs"]._problem._constant_jacobian and self._ad_solvers["update_adjoint"] ): # Update left hand side of the adjoint equation. self._ad_solver_replace_forms(Solver.ADJOINT) self._ad_solvers["adjoint_lvs"].invalidate_jacobian() self._ad_solvers["update_adjoint"] = False elif not self._ad_solvers["forward_nlvs"]._problem._constant_jacobian: # Update left hand side of the adjoint equation. self._ad_solver_replace_forms(Solver.ADJOINT) # Update the right hand side of the adjoint equation. # problem.F._component[1] is the right hand side of the adjoint. self._ad_solvers["adjoint_lvs"]._problem.F._components[1].assign(dJdu) # Solve the adjoint linear variational solver. self._ad_solvers["adjoint_lvs"].solve() u_sol = self._ad_solvers["adjoint_lvs"]._problem.u adj_sol_bdy = None if compute_bdy: jac_adj = self._ad_solvers["adjoint_lvs"]._problem.J adj_sol_bdy = self._compute_adj_bdy( u_sol, adj_sol_bdy, jac_adj, dJdu_copy) return u_sol, adj_sol_bdy def _ad_assign_map(self, form, solver): if solver == Solver.FORWARD: count_map = self._ad_solvers["forward_nlvs"]._problem._ad_count_map else: count_map = self._ad_solvers["adjoint_lvs"]._problem._ad_count_map assign_map = {} form_ad_count_map = dict((count_map[coeff], coeff) for coeff in form.coefficients()) for block_variable in self.get_dependencies(): coeff = block_variable.output if isinstance(coeff, (firedrake.Coefficient, firedrake.Constant, firedrake.Cofunction)): coeff_count = coeff.count() if coeff_count in form_ad_count_map: assign_map[form_ad_count_map[coeff_count]] = \ block_variable.saved_output if ( solver == Solver.ADJOINT and not self._ad_solvers["forward_nlvs"]._problem._constant_jacobian ): block_variable = self.get_outputs()[0] coeff_count = block_variable.output.count() if coeff_count in form_ad_count_map: assign_map[form_ad_count_map[coeff_count]] = \ block_variable.saved_output return assign_map def _ad_assign_coefficients(self, form, solver): assign_map = self._ad_assign_map(form, solver) for coeff, value in assign_map.items(): coeff.assign(value) def _ad_solver_replace_forms(self, solver=Solver.FORWARD): if solver == Solver.FORWARD: problem = self._ad_solvers["forward_nlvs"]._problem self._ad_assign_coefficients(problem.F, solver) self._ad_assign_coefficients(problem.J, solver) else: self._ad_assign_coefficients( self._ad_solvers["adjoint_lvs"]._problem.J, solver)
[docs] def prepare_evaluate_adj(self, inputs, adj_inputs, relevant_dependencies): compute_bdy = self._should_compute_boundary_adjoint( relevant_dependencies ) adj_sol, adj_sol_bdy = self._adjoint_solve(adj_inputs[0], compute_bdy) self.adj_state = adj_sol if self.adj_cb is not None: self.adj_cb(adj_sol) if self.adj_bdy_cb is not None and compute_bdy: self.adj_bdy_cb(adj_sol_bdy) r = {} r["form"] = self._create_F_form() r["adj_sol"] = self.adj_state r["adj_sol_bdy"] = adj_sol_bdy return r
[docs] def evaluate_adj_component(self, inputs, adj_inputs, block_variable, idx, prepared=None): if not self.linear and self.func == block_variable.output: # We are not able to calculate derivatives wrt initial guess. return None F_form = prepared["form"] adj_sol = prepared["adj_sol"] adj_sol_bdy = prepared["adj_sol_bdy"] c = block_variable.output c_rep = block_variable.saved_output if isinstance(c, firedrake.Function): trial_function = firedrake.TrialFunction(c.function_space()) elif isinstance(c, firedrake.Constant): mesh = F_form.ufl_domain() trial_function = firedrake.TrialFunction( c._ad_function_space(mesh) ) elif isinstance(c, firedrake.DirichletBC): tmp_bc = c.reconstruct( g=extract_subfunction(adj_sol_bdy, c.function_space()) ) return [tmp_bc] elif isinstance(c, firedrake.MeshGeometry): # Using CoordianteDerivative requires us to do action before # differentiating, might change in the future. F_form_tmp = firedrake.action(F_form, adj_sol) X = firedrake.SpatialCoordinate(c_rep) dFdm = firedrake.derivative(-F_form_tmp, X, firedrake.TestFunction( c._ad_function_space()) ) dFdm = firedrake.assemble(dFdm, **self.assemble_kwargs) return dFdm # dFdm_cache works with original variables, not block saved outputs. if c in self._dFdm_cache: dFdm = self._dFdm_cache[c] else: dFdm = -firedrake.derivative(self.lhs, c, trial_function) dFdm = firedrake.adjoint(dFdm) self._dFdm_cache[c] = dFdm # Replace the form coefficients with checkpointed values. replace_map = self._replace_map(dFdm) replace_map[self.func] = self.get_outputs()[0].saved_output dFdm = replace(dFdm, replace_map) dFdm = dFdm * adj_sol dFdm = firedrake.assemble(dFdm, **self.assemble_kwargs) return dFdm
[docs] class ProjectBlock(SolveVarFormBlock): def __init__(self, v, V, output, bcs=[], *args, **kwargs): mesh = kwargs.pop("mesh", None) if mesh is None: mesh = V.mesh() dx = firedrake.dx(mesh) w = firedrake.TestFunction(V) Pv = firedrake.TrialFunction(V) a = firedrake.inner(Pv, w) * dx L = firedrake.inner(v, w) * dx super().__init__(a == L, output, bcs, *args, **kwargs) def _init_solver_parameters(self, args, kwargs): super()._init_solver_parameters(args, kwargs) solve_init_params(self, args, kwargs, varform=True)
[docs] class SupermeshProjectBlock(Block): r""" Annotates supermesh projection. Suppose we have a source space, :math:`V_A`, and a target space, :math:`V_B`. Projecting a source from :math:`V_A` to :math:`V_B` amounts to solving the linear system .. math:: M_B * v_B = M_{AB} * v_A, where * :math:`M_B` is the mass matrix on :math:`V_B`, * :math:`M_{AB}` is the mixed mass matrix for :math:`V_A` and :math:`V_B`, * :math:`v_A` and :math:`v_B` are vector representations of the source and target :class:`.Function` s. This can be broken into two steps: Step 1. form RHS, multiplying the source with the mixed mass matrix; Step 2. solve linear system. """ def __init__(self, source, target_space, target, bcs=[], **kwargs): super(SupermeshProjectBlock, self).__init__( ad_block_tag=kwargs.pop("ad_block_tag", None) ) import firedrake.supermeshing as supermesh # Process args and kwargs if not isinstance(source, firedrake.Function): raise NotImplementedError( f"Source function must be a Function, not {type(source)}." ) if bcs != []: raise NotImplementedError( "Boundary conditions not yet considered." ) # Store spaces mesh = kwargs.pop("mesh", None) if mesh is None: mesh = target_space.mesh() self.source_space = source.function_space() self.target_space = target_space self.projector = firedrake.Projector(source, target_space, **kwargs) # Assemble mixed mass matrix with stop_annotating(): self.mixed_mass = supermesh.assemble_mixed_mass_matrix( source.function_space(), target_space ) # Add dependencies self.add_dependency(source, no_duplicates=True) for bc in bcs: self.add_dependency(bc, no_duplicates=True)
[docs] def apply_mixedmass(self, a): b = firedrake.Function(self.target_space.dual()) with a.dat.vec_ro as vsrc, b.dat.vec_wo as vrhs: self.mixed_mass.mult(vsrc, vrhs) return b
[docs] def recompute_component(self, inputs, block_variable, idx, prepared): if not isinstance(inputs[0], firedrake.Function): raise NotImplementedError( f"Source function must be a Function, not {type(inputs[0])}." ) target = firedrake.Function(self.target_space) rhs = self.apply_mixedmass(inputs[0]) # Step 1 self.projector.apply_massinv(target, rhs) # Step 2 return maybe_disk_checkpoint(target)
def _recompute_component_transpose(self, inputs): if not isinstance(inputs[0], firedrake.Cofunction): raise NotImplementedError( f"Source function must be a Cofunction, not {type(inputs[0])}." ) out = firedrake.Cofunction(self.source_space.dual()) tmp = firedrake.Function(self.target_space) # Adjoint of step 2 (mass is self-adjoint) self.projector.apply_massinv(tmp, inputs[0]) with tmp.dat.vec_ro as vtmp, out.dat.vec_wo as vout: self.mixed_mass.multTranspose(vtmp, vout) # Adjoint of step 1 return out
[docs] def evaluate_adj_component(self, inputs, adj_inputs, block_variable, idx, prepared=None): """ Evaluate the adjoint to one output of the block Recall that the forward propagation can be broken down as: Step 1. multiply :math:`w := M_{AB} * v_A`; Step 2. solve :math:`M_B * v_B = w`. For a seed vector :math:`v_B^{seed}` from the target space, the adjoint is given by: Adjoint of step 2. solve :math:`M_B^T * w = v_B^{seed}` for `w`; Adjoint of step 1. multiply :math:`v_A^{adj} := M_{AB}^T * w`. """ if len(adj_inputs) != 1: raise NotImplementedError( "SupermeshProjectBlock must have a single output" ) return self._recompute_component_transpose(adj_inputs)
[docs] def evaluate_tlm_component(self, inputs, tlm_inputs, block_variable, idx, prepared=None): """ Given that the input is a `Function`, we just have a linear operation. As such, the tlm is just the sum of each tlm input projected into the target space. """ dJdm = firedrake.Function(self.target_space) for tlm_input in tlm_inputs: if tlm_input is None: continue dJdm += self.recompute_component([tlm_input], block_variable, idx, prepared) return dJdm
[docs] def evaluate_hessian_component(self, inputs, hessian_inputs, adj_inputs, block_variable, idx, relevant_dependencies, prepared=None): if len(hessian_inputs) != 1: raise NotImplementedError( "SupermeshProjectBlock must have a single output" ) return self.evaluate_adj_component(inputs, hessian_inputs, block_variable, idx)
def __str__(self): target_string = f"〈{str(self.target_space.ufl_element().shortstr())}〉" return f"project({self.get_dependencies()[0]}, {target_string}))"