Source code for firedrake.adjoint_utils.blocks.dirichlet_bc

import ufl
import firedrake
from pyadjoint import Block, OverloadedType, no_annotations
from .block_utils import isconstant


[docs] def extract_bc_subvector(value, Vtarget, bc): """Extract from value (a function in a mixed space), the sub function corresponding to the part of the space bc applies to. Vtarget is the target (collapsed) space.""" r = value for idx in bc._indices: r = r.sub(idx) assert Vtarget == r.function_space() return r
[docs] class DirichletBCBlock(Block): def __init__(self, *args, **kwargs): Block.__init__(self, ad_block_tag=kwargs.pop('ad_block_tag', None)) self.function_space = args[0] self.parent_space = self.function_space while ( hasattr(self.parent_space, "_ad_parent_space") and self.parent_space._ad_parent_space is not None ): self.parent_space = self.parent_space._ad_parent_space self.collapsed_space = self.function_space if self.function_space != self.parent_space: self.collapsed_space = self.function_space.collapse() if len(args) >= 2 and isinstance(args[1], OverloadedType): self.add_dependency(args[1]) else: # TODO: Implement the other cases. Probably just a BC without # dependencies? In which case we might not even need this # Block? Update: What if someone runs: `DirichletBC(V, g*g, # "on_boundary")`. In this case the backend will project the # product onto V. But we will have to annotate the product # somehow. One solution would be to do a check and add a # ProjectBlock before the DirichletBCBlock. (Either by # actually running our project or by "manually" inserting a # project block). pass
[docs] def evaluate_adj_component(self, inputs, adj_inputs, block_variable, idx, prepared=None): bc = self.get_outputs()[0].saved_output c = block_variable.output adj_inputs = adj_inputs[0] adj_output = None for adj_input in adj_inputs: if isconstant(c): adj_value = firedrake.Function(self.parent_space.dual()) adj_input.apply(adj_value) if self.function_space != self.parent_space: vec = extract_bc_subvector( adj_value, self.collapsed_space, bc ) adj_value = firedrake.Function(self.collapsed_space, vec.dat) if adj_value.ufl_shape == () or adj_value.ufl_shape[0] <= 1: R = firedrake.FunctionSpace(self.parent_space.mesh(), "R", 0) r = firedrake.Function(R.dual(), val=adj_value.dat.data_ro.sum()) else: output = [] subindices = _extract_subindices(self.function_space) for indices in subindices: current_subfunc = adj_value prev_idx = None for i in indices: if prev_idx is not None: current_subfunc = current_subfunc.sub(prev_idx) prev_idx = i output.append( current_subfunc.sub( prev_idx, deepcopy=True ).dat.data_ro.sum() ) r = firedrake.cpp.la.Vector(firedrake.MPI.comm_world, len(output)) r[:] = output elif isinstance(c, firedrake.Function): # TODO: This gets a little complicated. # The function may belong to a different space, # and with `Function.set_allow_extrapolation(True)` # you can even use the Function outside its domain. # For now we will just assume the FunctionSpace is the same for # the BC and the Function. adj_value = firedrake.Function(self.parent_space.dual()) adj_input.apply(adj_value) r = extract_bc_subvector( adj_value, c.function_space(), bc ) if adj_output is None: adj_output = r else: adj_output += r return adj_output
[docs] def evaluate_tlm_component(self, inputs, tlm_inputs, block_variable, idx, prepared=None): bc = block_variable.saved_output for bv in self.get_dependencies(): tlm_input = bv.tlm_value if tlm_input is None: continue if self.function_space != self.parent_space and not isinstance( tlm_input, ufl.Coefficient ): tlm_input = firedrake.project(tlm_input, self.collapsed_space) # TODO: This is gonna crash for dirichletbcs with multiple # dependencies (can't add two bcs) However, if there is # multiple dependencies, we need to AD the expression (i.e if # value=f*g then dvalue = tlm_f * g + f * tlm_g). Right now # we can only handle value=f => dvalue = tlm_f. m = bc.reconstruct(g=tlm_input) return m
[docs] def evaluate_hessian_component(self, inputs, hessian_inputs, adj_inputs, block_variable, idx, relevant_dependencies, prepared=None): # The same as evaluate_adj but with hessian values. return self.evaluate_adj_component( inputs, hessian_inputs, block_variable, idx )
[docs] @no_annotations def recompute(self): # There is nothing to do. The checkpoint is weak, # so it changes automatically with the dependency checkpoint. return
def __str__(self): return "DirichletBC block"
def _extract_subindices(V): assert V.num_sub_spaces() > 0 r = [] for i in range(V.num_sub_spaces()): indices_sequence = [i] _build_subindices(indices_sequence, r, V.sub(i)) indices_sequence.pop() return r def _build_subindices(indices_sequence, r, V): if V.num_sub_spaces() <= 0: r.append(tuple(indices_sequence)) else: for i in range(V.num_sub_spaces()): indices_sequence.append(i) _build_subindices(indices_sequence, r, V) indices_sequence.pop()