Source code for gusto.spatial_methods.augmentation

"""
A module defining objects for temporarily augmenting an equation with another.
"""


from abc import ABCMeta, abstractmethod
from firedrake import (
    MixedFunctionSpace, Function, TestFunctions, split, inner, dx, grad,
    LinearVariationalProblem, LinearVariationalSolver, lhs, rhs, dot,
    ds_b, ds_v, ds_t, ds, FacetNormal, TestFunction, TrialFunction,
    transpose, nabla_grad, outer, dS, dS_h, dS_v, sign, jump, div,
    Constant, sqrt, cross, curl, FunctionSpace, assemble, DirichletBC
)
from firedrake.fml import subject
from gusto import (
    time_derivative, transport, transporting_velocity, TransportEquationType,
    logger
)


[docs] class Augmentation(object, metaclass=ABCMeta): """ Augments an equation with another equation to be solved simultaneously. """
[docs] @abstractmethod def pre_apply(self, x_in): """ Steps to take at the beginning of an apply method, for instance to assign the input field to the internal mixed function. """ pass
[docs] @abstractmethod def post_apply(self, x_out): """ Steps to take at the end of an apply method, for instance to assign the internal mixed function to the output field. """ pass
[docs] @abstractmethod def update(self, x_in_mixed): """ Any intermediate update steps, depending on the current mixed function. """ pass
[docs] class VorticityTransport(Augmentation): """ Solves the transport of a vector field, simultaneously with the vorticity as a mixed proble, as described in Bendall and Wimmer (2022). Note that this is most effective with implicit time discretisations. The residual-based SUPG option provides a dissipation method. Args: domain (:class:`Domain`): The domain object. eqns (:class:`PrognosticEquationSet`): The overarching equation set. transpose_commutator (bool, optional): Whether to include the commutator of the transpose gradient terms. This is necessary for solving the general vector transport equation, but is not necessary when the transporting and transported fields are the same. Defaults to True. supg (bool, optional): Whether to include dissipation through a residual-based SUPG scheme. Defaults to False. """ def __init__( self, domain, eqns, transpose_commutator=True, supg=False ): V_vel = domain.spaces('HDiv') V_vort = domain.spaces('H1') self.fs = MixedFunctionSpace((V_vel, V_vort)) self.X = Function(self.fs) self.tests = TestFunctions(self.fs) u = Function(V_vel) F, Z = split(self.X) test_F, test_Z = self.tests quad = domain.max_quad_degree if hasattr(domain.mesh, "_base_mesh"): self.ds = ds_b(degree=quad) + ds_t(degree=quad) + ds_v(degree=quad) self.dS = dS_v(degree=quad) + dS_h(degree=quad) else: self.ds = ds(degree=quad) self.dS = dS(degree=quad) # Add boundary conditions self.bcs = [] if 'u' in eqns.bcs.keys(): for bc in eqns.bcs['u']: self.bcs.append( DirichletBC(self.fs.sub(0), bc.function_arg, bc.sub_domain) ) # Set up test function and the vorticity term n = FacetNormal(domain.mesh) sign_u = 0.5*(sign(dot(u, n)) + 1) upw = lambda f: (sign_u('+')*f('+') + sign_u('-')*f('-')) if domain.mesh.topological_dimension() == 2: mix_test = test_F - domain.perp(grad(test_Z)) F_cross_u = Z*domain.perp(u) elif domain.mesh.topological_dimension == 3: mix_test = test_F - curl(test_Z) F_cross_u = cross(Z, u) time_deriv_form = inner(F, test_F)*dx + inner(Z, test_Z)*dx # Standard vector invariant transport form ----------------------------- transport_form = ( # vorticity term inner(mix_test, F_cross_u)*dx + inner(n, test_Z*Z*u)*self.ds # 0.5*grad(v . F) - 0.5 * div(mix_test) * inner(u, F)*dx + 0.5 * inner(mix_test, n) * inner(u, F)*self.ds ) # Communtator of tranpose gradient terms ------------------------------- # This is needed for general vector transport if transpose_commutator: u_dot_nabla_F = dot(u, transpose(nabla_grad(F))) transport_form += ( - inner(n, test_Z*domain.perp(u_dot_nabla_F))*self.ds # + 0.5*grad(F).v - 0.5 * dot(F, div(outer(u, mix_test)))*dx + 0.5 * inner(mix_test('+'), n('+'))*dot(jump(u), upw(F))*self.dS # - 0.5*grad(v).F + 0.5 * dot(u, div(outer(F, mix_test)))*dx - 0.5 * inner(mix_test('+'), n('+'))*dot(jump(F), upw(u))*self.dS ) # SUPG terms ----------------------------------------------------------- # Add the vorticity residual to the transported vorticity, # which damps enstrophy if supg: # Determine SUPG coefficient --------------------------------------- tau = 0.5*domain.dt # Find mean grid spacing to determine a Courant number DG0 = FunctionSpace(domain.mesh, 'DG', 0) ones = Function(DG0).interpolate(Constant(1.0)) area = assemble(ones*dx) mean_dx = (area/DG0.dof_count)**(1/domain.mesh.geometric_dimension()) # Divide by approximately (1 + c) tau /= (1.0 + sqrt(dot(u, u))*domain.dt/Constant(mean_dx)) dxqp = dx(degree=3) if domain.mesh.topological_dimension() == 2: time_deriv_form -= inner(mix_test, tau*Z*domain.perp(u)/domain.dt)*dxqp transport_form -= inner( mix_test, tau*domain.perp(u)*domain.divperp(Z*domain.perp(u)) )*dxqp if transpose_commutator: transport_form -= inner( mix_test, tau*domain.perp(u)*domain.divperp(u_dot_nabla_F) )*dxqp elif domain.mesh.topological_dimension() == 3: time_deriv_form -= inner(mix_test, tau*cross(Z, u)/domain.dt)*dxqp transport_form -= inner( mix_test, tau*cross(curl(Z*u), u) )*dxqp if transpose_commutator: transport_form -= inner( mix_test, tau*cross(curl(u_dot_nabla_F), u) )*dxqp # Assemble the residual ------------------------------------------------ residual = ( time_derivative(time_deriv_form) + transport( transport_form, TransportEquationType.vector_invariant ) ) residual = transporting_velocity(residual, u) self.residual = subject(residual, self.X) self.x_in = Function(self.fs) self.Z_in = Function(V_vort) self.x_out = Function(self.fs) vort_test = TestFunction(V_vort) vort_trial = TrialFunction(V_vort) F_in, _ = split(self.x_in) eqn = ( inner(vort_trial, vort_test)*dx + inner(domain.perp(grad(vort_test)), F_in)*dx + vort_test*inner(n, domain.perp(F_in))*self.ds ) problem = LinearVariationalProblem( lhs(eqn), rhs(eqn), self.Z_in, constant_jacobian=True ) self.solver = LinearVariationalSolver(problem)
[docs] def pre_apply(self, x_in): """ Sets the velocity field for the local mixed function. Args: x_in (:class:`Function`): The input velocity field """ self.x_in.subfunctions[0].assign(x_in)
[docs] def post_apply(self, x_out): """ Sets the output velocity field from the local mixed function. Args: x_out (:class:`Function`): the output velocity field. """ x_out.assign(self.x_out.subfunctions[0])
[docs] def update(self, x_in_mixed): """ Performs the solve to determine the vorticity function. Args: x_in_mixed (:class:`Function`): The mixed function to update. """ self.x_in.subfunctions[0].assign(x_in_mixed.subfunctions[0]) logger.debug('Vorticity solve') self.solver.solve() self.x_in.subfunctions[1].assign(self.Z_in)