Source code for gusto.physics.held_suarez_forcing

import numpy as np
from firedrake import (Interpolator, Function, dx, pi, SpatialCoordinate,
                       split, conditional, ge, sin, dot, ln, cos, inner, Projector)
from firedrake.fml import subject
from gusto.core.coord_transforms import lonlatr_from_xyz
from gusto.recovery import Recoverer, BoundaryMethod
from gusto.physics.physics_parametrisation import PhysicsParametrisation
from gusto.core.labels import prognostic
from gusto.equations import thermodynamics
from gusto.core.equation_configuration import HeldSuarezParameters
from gusto.core import logger


[docs] class Relaxation(PhysicsParametrisation): """ Relaxation term for Held Suarez """ def __init__(self, equation, variable_name, parameters, hs_parameters=None): """ Args: equation (:class:`PrognosticEquationSet`): the model's equation. variable_name (str): the name of the variable hs_parameters (:class'Configuration'): contains the parameters for the Held-suariez test case """ label_name = f'relaxation_{variable_name}' if hs_parameters is None: hs_parameters = HeldSuarezParameters(equation.domain.mesh) logger.warning('Using default Held-Suarez parameters') super().__init__(equation, label_name, hs_parameters) if equation.domain.on_sphere: x, y, z = SpatialCoordinate(equation.domain.mesh) _, lat, _ = lonlatr_from_xyz(x, y, z) else: # TODO: this could be determined some other way # Take a mid-latitude lat = pi / 4 self.X = Function(equation.X.function_space()) X = self.X self.domain = equation.domain theta_idx = equation.field_names.index('theta') self.theta = X.subfunctions[theta_idx] Vt = equation.domain.spaces('theta') rho_idx = equation.field_names.index('rho') rho = split(X)[rho_idx] boundary_method = BoundaryMethod.extruded if equation.domain.vertical_degree == 0 else None self.rho_averaged = Function(Vt) self.rho_recoverer = Recoverer(rho, self.rho_averaged, boundary_method=boundary_method) self.exner = Function(Vt) self.exner_interpolator = Interpolator( thermodynamics.exner_pressure(equation.parameters, self.rho_averaged, self.theta), self.exner) self.sigma = Function(Vt) kappa = equation.parameters.kappa T0surf = hs_parameters.T0surf T0horiz = hs_parameters.T0horiz T0vert = hs_parameters.T0vert T0stra = hs_parameters.T0stra sigma_b = hs_parameters.sigmab tau_d = hs_parameters.tau_d tau_u = hs_parameters.tau_u theta_condition = (T0surf - T0horiz * sin(lat)**2 - (T0vert * ln(self.exner) * cos(lat)**2)/kappa) Theta_eq = conditional(T0stra/self.exner >= theta_condition, T0stra/self.exner, theta_condition) # timescale of temperature forcing tau_cond = (self.sigma**(1/kappa) - sigma_b) / (1 - sigma_b) newton_freq = 1 / tau_d + (1/tau_u - 1/tau_d) * conditional(0 >= tau_cond, 0, tau_cond) * cos(lat)**4 forcing_expr = newton_freq * (self.theta - Theta_eq) # Create source for forcing self.source_relaxation = Function(Vt) self.source_interpolator = Interpolator(forcing_expr, self.source_relaxation) # Add relaxation term to residual test = equation.tests[theta_idx] dx_reduced = dx(degree=equation.domain.max_quad_degree) forcing_form = test * self.source_relaxation * dx_reduced equation.residual += self.label(subject(prognostic(forcing_form, 'theta'), X), self.evaluate)
[docs] def evaluate(self, x_in, dt): """ Evalutes the source term generated by the physics. Args: x_in: (:class:`Function`): the (mixed) field to be evolved. dt: (:class:`Constant`): the timestep, which can be the time interval for the scheme. """ self.X.assign(x_in) self.rho_recoverer.project() self.exner_interpolator.interpolate() # Determine sigma:= exner / exner_surf exner_columnwise, index_data = self.domain.coords.get_column_data(self.exner, self.domain) sigma_columnwise = np.zeros_like(exner_columnwise) for col in range(len(exner_columnwise[:, 0])): sigma_columnwise[col, :] = exner_columnwise[col, :] / exner_columnwise[col, 0] self.domain.coords.set_field_from_column_data(self.sigma, sigma_columnwise, index_data) self.source_interpolator.interpolate()
[docs] class RayleighFriction(PhysicsParametrisation): """ Forcing term on the velocity of the form F_u = -u / a, where a is some friction factor """ def __init__(self, equation, hs_parameters=None): """ Args: equation (:class:`PrognosticEquationSet`): the model's equation. hs_parameters (:class'Configuration'): contains the parameters for the Held-suariez test case """ label_name = 'rayleigh_friction' if hs_parameters is None: hs_parameters = HeldSuarezParameters(equation.domain.mesh) logger.warning('Using default Held-Suarez parameters') super().__init__(equation, label_name, hs_parameters) self.domain = equation.domain self.X = Function(equation.X.function_space()) X = self.X k = equation.domain.k u_idx = equation.field_names.index('u') u = split(X)[u_idx] theta_idx = equation.field_names.index('theta') self.theta = X.subfunctions[theta_idx] rho_idx = equation.field_names.index('rho') rho = split(X)[rho_idx] Vt = equation.domain.spaces('theta') Vu = equation.domain.spaces('HDiv') u_hori = u - k*dot(u, k) boundary_method = BoundaryMethod.extruded if self.domain == 0 else None self.rho_averaged = Function(Vt) self.exner = Function(Vt) self.rho_recoverer = Recoverer(rho, self.rho_averaged, boundary_method=boundary_method) self.exner_interpolator = Interpolator( thermodynamics.exner_pressure(equation.parameters, self.rho_averaged, self.theta), self.exner) self.sigma = Function(Vt) sigmab = hs_parameters.sigmab kappa = equation.parameters.kappa tau_fric = 24 * 60 * 60 tau_cond = (self.sigma**(1/kappa) - sigmab) / (1 - sigmab) wind_timescale = conditional(ge(0, tau_cond), 0, tau_cond) / tau_fric forcing_expr = u_hori * wind_timescale self.source_friction = Function(Vu) self.source_projector = Projector(forcing_expr, self.source_friction) tests = equation.tests test = tests[u_idx] dx_reduced = dx(degree=equation.domain.max_quad_degree) source_form = inner(test, self.source_friction) * dx_reduced equation.residual += self.label(subject(prognostic(source_form, 'u'), X), self.evaluate)
[docs] def evaluate(self, x_in, dt): """ Evaluates the source term generated by the physics. This does nothing if the implicit formulation is not used. Args: x_in: (:class: 'Function'): the (mixed) field to be evolved. dt: (:class: 'Constant'): the timestep, which can be the time interval for the scheme. """ self.X.assign(x_in) self.rho_recoverer.project() self.exner_interpolator.interpolate() # Determine sigma:= exner / exner_surf exner_columnwise, index_data = self.domain.coords.get_column_data(self.exner, self.domain) sigma_columnwise = np.zeros_like(exner_columnwise) for col in range(len(exner_columnwise[:, 0])): sigma_columnwise[col, :] = exner_columnwise[col, :] / exner_columnwise[col, 0] self.domain.coords.set_field_from_column_data(self.sigma, sigma_columnwise, index_data) self.source_projector.project()