Source code for gusto.equations.shallow_water_equations

"""Classes for defining variants of the shallow-water equations."""

from firedrake import (inner, dx, div, FunctionSpace, FacetNormal, jump, avg,
                       dS, split, conditional, exp)
from firedrake.fml import subject, drop
from gusto.core.labels import (time_derivative, transport, prognostic,
                               linearisation, pressure_gradient, coriolis)
from gusto.equations.common_forms import (
    advection_form, advection_form_1d, continuity_form,
    continuity_form_1d, vector_invariant_form,
    kinetic_energy_form, advection_equation_circulation_form, diffusion_form_1d,
    linear_continuity_form, linear_advection_form
)
from gusto.equations.prognostic_equations import PrognosticEquationSet


__all__ = ["ShallowWaterEquations", "LinearShallowWaterEquations",
           "ThermalShallowWaterEquations",
           "LinearThermalShallowWaterEquations",
           "ShallowWaterEquations_1d", "LinearShallowWaterEquations_1d"]


[docs] class ShallowWaterEquations(PrognosticEquationSet): u""" Class for the (rotating) shallow-water equations, which evolve the velocity 'u' and the depth field 'D', via some variant of: \n ∂u/∂t + (u.∇)u + f×u + g*∇(D+B) = 0, \n ∂D/∂t + ∇.(D*u) = 0, \n for Coriolis parameter 'f' and bottom surface 'B'. """ def __init__(self, domain, parameters, fexpr=None, topog_expr=None, space_names=None, linearisation_map='default', u_transport_option='vector_invariant_form', no_normal_flow_bc_ids=None, active_tracers=None): """ Args: domain (:class:`Domain`): the model's domain object, containing the mesh and the compatible function spaces. parameters (:class:`Configuration`, optional): an object containing the model's physical parameters. fexpr (:class:`ufl.Expr`, optional): an expression for the Coroilis parameter. Defaults to None. topog_expr (:class:`ufl.Expr`, optional): an expression for the bottom surface of the fluid. Defaults to None. space_names (dict, optional): a dictionary of strings for names of the function spaces to use for the spatial discretisation. The keys are the names of the prognostic variables. Defaults to None in which case the spaces are taken from the de Rham complex. Any buoyancy variable is taken by default to lie in the L2 space. linearisation_map (func, optional): a function specifying which terms in the equation set to linearise. If None is specified then no terms are linearised. Defaults to the string 'default', in which case the linearisation includes both time derivatives, the 'D' transport term and the pressure gradient term. u_transport_option (str, optional): specifies the transport term used for the velocity equation. Supported options are: 'vector_invariant_form', 'vector_advection_form', and 'circulation_form'. Defaults to 'vector_invariant_form'. no_normal_flow_bc_ids (list, optional): a list of IDs of domain boundaries at which no normal flow will be enforced. Defaults to None. active_tracers (list, optional): a list of `ActiveTracer` objects that encode the metadata for any active tracers to be included in the equations. Defaults to None. """ if active_tracers is None: active_tracers = [] if linearisation_map == 'default': # Default linearisation is time derivatives, pressure gradient and # transport term from depth equation. Don't include active tracers linearisation_map = lambda t: \ t.get(prognostic) in ['u', 'D'] \ and (any(t.has_label(time_derivative, coriolis, pressure_gradient)) or (t.get(prognostic) in ['D'] and t.has_label(transport))) field_names = ['u', 'D'] space_names = {'u': 'HDiv', 'D': 'L2'} super().__init__(field_names, domain, space_names, linearisation_map=linearisation_map, no_normal_flow_bc_ids=no_normal_flow_bc_ids, active_tracers=active_tracers) self.parameters = parameters self.domain = domain self.active_tracers = active_tracers self._setup_residual(fexpr, topog_expr, u_transport_option) # -------------------------------------------------------------------- # # Linearise equations # -------------------------------------------------------------------- # # Add linearisations to equations self.residual = self.generate_linear_terms( self.residual, self.linearisation_map) def _setup_residual(self, fexpr, topog_expr, u_transport_option): """ Sets up the residual for the shallow water equations. This is separate from the __init__ method because the thermal shallow water equation class expands on this equation set by adding additional fields that depend on the formulation. This increases the size of the mixed function space and the residual must be setup after this has happened. Args: fexpr (:class:`ufl.Expr`): an expression for the Coroilis parameter. topog_expr (:class:`ufl.Expr`): an expression for the bottom surface of the fluid. u_transport_option (str): specifies the transport term used for the velocity equation. Supported options are: 'vector_invariant_form', 'vector_advection_form', and 'circulation_form'. """ g = self.parameters.g w, phi = self.tests[0:2] u, D = split(self.X)[0:2] u_trial = split(self.trials)[0] Dbar = split(self.X_ref)[1] # -------------------------------------------------------------------- # # Time Derivative Terms # -------------------------------------------------------------------- # mass_form = self.generate_mass_terms() # -------------------------------------------------------------------- # # Transport Terms # -------------------------------------------------------------------- # # Velocity transport term -- depends on formulation if u_transport_option == "vector_invariant_form": u_adv = prognostic(vector_invariant_form(self.domain, w, u, u), 'u') elif u_transport_option == "vector_advection_form": u_adv = prognostic(advection_form(w, u, u), 'u') elif u_transport_option == "circulation_form": ke_form = prognostic(kinetic_energy_form(w, u, u), 'u') u_adv = prognostic(advection_equation_circulation_form(self.domain, w, u, u), 'u') + ke_form else: raise ValueError("Invalid u_transport_option: %s" % self.u_transport_option) # Depth transport term D_adv = prognostic(continuity_form(phi, D, u), 'D') # Transport term needs special linearisation if self.linearisation_map(D_adv.terms[0]): linear_D_adv = linear_continuity_form(phi, Dbar, u_trial) # Add linearisation to D_adv D_adv = linearisation(D_adv, linear_D_adv) adv_form = subject(u_adv + D_adv, self.X) # Add transport of tracers if len(self.active_tracers) > 0: adv_form += self.generate_tracer_transport_terms( self.active_tracers) # -------------------------------------------------------------------- # # Pressure Gradient Term # -------------------------------------------------------------------- # # On assuming ``g``, it is right to keep it out of the integral. pressure_gradient_form = pressure_gradient( subject(prognostic(-g*(div(w)*D*dx), 'u'), self.X)) residual = (mass_form + adv_form + pressure_gradient_form) # -------------------------------------------------------------------- # # Extra Terms (Coriolis, Topography) # -------------------------------------------------------------------- # # TODO: Is there a better way to store the Coriolis / topography fields? # The current approach is that these are prescribed fields, stored in # the equation, and initialised when the equation is if fexpr is not None: V = FunctionSpace(self.domain.mesh, 'CG', 1) f = self.prescribed_fields('coriolis', V).interpolate(fexpr) coriolis_form = coriolis(subject( prognostic(f*inner(self.domain.perp(u), w)*dx, "u"), self.X)) # Add linearisation if self.linearisation_map(coriolis_form.terms[0]): linear_coriolis = coriolis( subject(prognostic(f*inner(self.domain.perp(u_trial), w)*dx, 'u'), self.X)) coriolis_form = linearisation(coriolis_form, linear_coriolis) residual += coriolis_form if topog_expr is not None: topography = self.prescribed_fields('topography', self.domain.spaces('DG')).interpolate(topog_expr) topography_form = subject(prognostic (-g*div(w)*topography*dx, 'u'), self.X) residual += topography_form self.residual = residual
[docs] class LinearShallowWaterEquations(ShallowWaterEquations): u""" Class for the linear (rotating) shallow-water equations, which describe the velocity 'u' and the depth field 'D', solving some variant of: \n ∂u/∂t + f×u + g*∇(D+B) = 0, \n ∂D/∂t + H*∇.(u) = 0, \n for mean depth 'H', Coriolis parameter 'f' and bottom surface 'B'. This is set up from the underlying :class:`ShallowWaterEquations`, which is then linearised. """ def __init__(self, domain, parameters, fexpr=None, topog_expr=None, space_names=None, linearisation_map='default', u_transport_option="vector_invariant_form", no_normal_flow_bc_ids=None, active_tracers=None): """ Args: domain (:class:`Domain`): the model's domain object, containing the mesh and the compatible function spaces. parameters (:class:`Configuration`, optional): an object containing the model's physical parameters. fexpr (:class:`ufl.Expr`, optional): an expression for the Coroilis parameter. Defaults to None. topog_expr (:class:`ufl.Expr`, optional): an expression for the bottom surface of the fluid. Defaults to None. space_names (dict, optional): a dictionary of strings for names of the function spaces to use for the spatial discretisation. The keys are the names of the prognostic variables. Defaults to None in which case the spaces are taken from the de Rham complex. Any buoyancy variable is taken by default to lie in the L2 space. linearisation_map (func, optional): a function specifying which terms in the equation set to linearise. If None is specified then no terms are linearised. Defaults to the string 'default', in which case the linearisation includes both time derivatives, the 'D' transport term, pressure gradient and Coriolis terms. u_transport_option (str, optional): specifies the transport term used for the velocity equation. Supported options are: 'vector_invariant_form', 'vector_advection_form' and 'circulation_form'. Defaults to 'vector_invariant_form'. no_normal_flow_bc_ids (list, optional): a list of IDs of domain boundaries at which no normal flow will be enforced. Defaults to None. active_tracers (list, optional): a list of `ActiveTracer` objects that encode the metadata for any active tracers to be included in the equations. Defaults to None. """ super().__init__(domain, parameters, fexpr=fexpr, topog_expr=topog_expr, space_names=space_names, linearisation_map=linearisation_map, u_transport_option=u_transport_option, no_normal_flow_bc_ids=no_normal_flow_bc_ids, active_tracers=active_tracers) # Use the underlying routine to do a first linearisation of the equations self.linearise_equation_set()
[docs] class ThermalShallowWaterEquations(ShallowWaterEquations): u""" Class for the (rotating) shallow-water equations, which evolve the velocity 'u' and the depth field 'D' via some variant of either: \n ∂u/∂t + (u.∇)u + f×u + b*∇(D+B) + 0.5*D*∇b= 0, \n ∂D/∂t + ∇.(D*u) = 0, \n ∂b/∂t + u.∇(b) = 0, \n for Coriolis parameter 'f', bottom surface 'B' and buoyancy field b, or, if equivalent_buoyancy=True: ∂u/∂t + (u.∇)u + f×u + b_e*∇(D+B) + 0.5*D*∇(b_e + beta_2 q_v)= 0, \n ∂D/∂t + ∇.(D*u) = 0, \n ∂b_e/∂t + u.∇(b_e) = 0, \n ∂q_t/∂t + u.∇(q_t) = 0, \n for Coriolis parameter 'f', bottom surface 'B', equivalent buoyancy field \n `b_e`=b-beta_2 q_v, and total moisture `q_t`=q_v+q_c, i.e. the sum of \n water vapour and cloud water. """ def __init__(self, domain, parameters, equivalent_buoyancy=False, fexpr=None, topog_expr=None, space_names=None, linearisation_map='default', u_transport_option='vector_invariant_form', no_normal_flow_bc_ids=None, active_tracers=None): """ Args: domain (:class:`Domain`): the model's domain object, containing the mesh and the compatible function spaces. parameters (:class:`Configuration`, optional): an object containing the model's physical parameters. equivalent_buoyancy (bool, optional): switch to specify formulation (see comments above). Defaults to False to give standard thermal shallow water. fexpr (:class:`ufl.Expr`, optional): an expression for the Coroilis parameter. Defaults to None. topog_expr (:class:`ufl.Expr`, optional): an expression for the bottom surface of the fluid. Defaults to None. space_names (dict, optional): a dictionary of strings for names of the function spaces to use for the spatial discretisation. The keys are the names of the prognostic variables. Defaults to None in which case the spaces are taken from the de Rham complex. Any buoyancy variable is taken by default to lie in the L2 space. linearisation_map (func, optional): a function specifying which terms in the equation set to linearise. If None is specified then no terms are linearised. Defaults to the string 'default', in which case the linearisation includes both time derivatives, the 'D' transport term and the pressure gradient term. u_transport_option (str, optional): specifies the transport term used for the velocity equation. Supported options are: 'vector_invariant_form', 'vector_advection_form', and 'circulation_form'. Defaults to 'vector_invariant_form'. no_normal_flow_bc_ids (list, optional): a list of IDs of domain boundaries at which no normal flow will be enforced. Defaults to None. active_tracers (list, optional): a list of `ActiveTracer` objects that encode the metadata for any active tracers to be included in the equations. Defaults to None. """ self.equivalent_buoyancy = equivalent_buoyancy field_names = ['u', 'D'] space_names = {'u': 'HDiv', 'D': 'L2'} self.b_name = 'b_e' if equivalent_buoyancy else 'b' if equivalent_buoyancy: for new_field in [self.b_name, 'q_t']: field_names.append(new_field) space_names[new_field] = 'L2' else: field_names.append(self.b_name) space_names[self.b_name] = 'L2' if active_tracers is None: active_tracers = [] if linearisation_map == 'default': # Default linearisation is time derivatives, pressure # gradient and transport terms from depth and buoyancy # equations. Include q_t if equivalent buoyancy. Don't include # active tracers. linear_transported = ['D', self.b_name] if equivalent_buoyancy: linear_transported.append('q_t') linearisation_map = lambda t: \ t.get(prognostic) in field_names \ and (any(t.has_label(time_derivative, pressure_gradient, coriolis)) or (t.get(prognostic) in linear_transported and t.has_label(transport))) # Bypass ShallowWaterEquations.__init__ to avoid having to # define the field_names separately PrognosticEquationSet.__init__( self, field_names, domain, space_names, linearisation_map=linearisation_map, no_normal_flow_bc_ids=no_normal_flow_bc_ids, active_tracers=active_tracers) self.parameters = parameters self.domain = domain self.active_tracers = active_tracers self._setup_residual(fexpr, topog_expr, u_transport_option) # -------------------------------------------------------------------- # # Linearise equations # -------------------------------------------------------------------- # # Add linearisations to equations self.residual = self.generate_linear_terms( self.residual, self.linearisation_map) def _setup_residual(self, fexpr, topog_expr, u_transport_option): """ Sets up the residual for the thermal shallow water equations, first calling the shallow water equation _setup_residual method to get the standard shallow water forms. Args: fexpr (:class:`ufl.Expr`): an expression for the Coroilis parameter. topog_expr (:class:`ufl.Expr`): an expression for the bottom surface of the fluid. u_transport_option (str): specifies the transport term used for the velocity equation. Supported options are: 'vector_invariant_form', 'vector_advection_form', and 'circulation_form'. """ # don't pass topography to super class as we deal with those # terms here later super()._setup_residual(fexpr=fexpr, topog_expr=None, u_transport_option=u_transport_option) w = self.tests[0] gamma = self.tests[2] u, D, b = split(self.X)[0:3] Dbar, bbar = split(self.X_ref)[1:3] u_trial, D_trial, b_trial = split(self.trials)[0:3] n = FacetNormal(self.domain.mesh) topog = self.prescribed_fields('topography', self.domain.spaces('DG')).interpolate(topog_expr) if topog_expr else None self.topog = topog if self.equivalent_buoyancy: gamma_qt = self.tests[3] qt = split(self.X)[3] qtbar = split(self.X_ref)[3] qt_trial = split(self.trials)[3] # -------------------------------------------------------------------- # # Add pressure gradient-like terms to residual # -------------------------------------------------------------------- # # drop usual pressure gradient term residual = self.residual.label_map( lambda t: t.has_label(pressure_gradient), drop) # add (moist) thermal source terms not involving topography - # label these as the equivalent pressure gradient term and # provide linearisation if self.equivalent_buoyancy: beta2 = self.parameters.beta2 qsat_expr = self.compute_saturation(self.X) qv = conditional(qt < qsat_expr, qt, qsat_expr) qvbar = conditional(qtbar < qsat_expr, qtbar, qsat_expr) source_form = pressure_gradient(subject(prognostic( -D * div(b*w) * dx - 0.5 * b * div(D*w) * dx + jump(b*w, n) * avg(D) * dS + 0.5 * jump(D*w, n) * avg(b) * dS - beta2 * D * div(qv*w)*dx - 0.5 * beta2 * qv * div(D*w) * dx + beta2 * jump(qv*w, n) * avg(D) * dS + 0.5 * beta2 * jump(D*w, n) * avg(qv) * dS, 'u'), self.X)) linear_source_form = pressure_gradient(subject(prognostic( -D_trial * div(bbar*w) * dx - 0.5 * b_trial * div(Dbar*w) * dx + jump(bbar*w, n) * avg(D_trial) * dS + 0.5 * jump(Dbar*w, n) * avg(b_trial) * dS - beta2 * D_trial * div(qvbar*w)*dx - 0.5 * beta2 * qvbar * div(Dbar*w) * dx + beta2 * jump(qvbar*w, n) * avg(D_trial) * dS + 0.5 * beta2 * jump(Dbar*w, n) * avg(qvbar) * dS - 0.5 * bbar * div(Dbar*w) * dx + 0.5 * jump(Dbar*w, n) * avg(bbar) * dS - 0.5 * bbar * div(D_trial*w) * dx + 0.5 * jump(D_trial*w, n) * avg(bbar) * dS - beta2 * 0.5 * qvbar * div(D_trial*w) * dx + beta2 * 0.5 * jump(D_trial*w, n) * avg(qvbar) * dS - beta2 * 0.5 * qt_trial * div(Dbar*w) * dx + beta2 * 0.5 * jump(Dbar*w, n) * avg(qt_trial) * dS, 'u'), self.X)) else: source_form = pressure_gradient( subject(prognostic(-D * div(b*w) * dx + jump(b*w, n) * avg(D) * dS - 0.5 * b * div(D*w) * dx + 0.5 * jump(D*w, n) * avg(b) * dS, 'u'), self.X)) linear_source_form = pressure_gradient( subject(prognostic(-D_trial * div(bbar*w) * dx + jump(bbar*w, n) * avg(D_trial) * dS - 0.5 * b_trial * div(Dbar*w) * dx + 0.5 * jump(Dbar*w, n) * avg(b_trial) * dS - 0.5 * bbar * div(Dbar*w) * dx + 0.5 * jump(Dbar*w, n) * avg(bbar) * dS - 0.5 * bbar * div(D_trial*w) * dx + 0.5 * jump(D_trial*w, n) * avg(bbar) * dS, 'u'), self.X)) source_form = linearisation(source_form, linear_source_form) residual += source_form # -------------------------------------------------------------------- # # add transport terms and their linearisations: # -------------------------------------------------------------------- # b_adv = prognostic(advection_form(gamma, b, u), self.b_name) if self.linearisation_map(b_adv.terms[0]): linear_b_adv = linear_advection_form(gamma, bbar, u_trial) b_adv = linearisation(b_adv, linear_b_adv) residual += subject(b_adv, self.X) if self.equivalent_buoyancy: qt_adv = prognostic(advection_form(gamma_qt, qt, u), "q_t") if self.linearisation_map(qt_adv.terms[0]): linear_qt_adv = linear_advection_form(gamma_qt, qtbar, u_trial) qt_adv = linearisation(qt_adv, linear_qt_adv) residual += subject(qt_adv, self.X) # -------------------------------------------------------------------- # # add topography terms: # -------------------------------------------------------------------- # if topog_expr is not None: if self.equivalent_buoyancy: topography_form = subject(prognostic( - topog * div(b*w) * dx + jump(b*w, n) * avg(topog) * dS - beta2 * topog * div(qv*w) * dx + beta2 * jump(qv*w, n) * avg(topog) * dS, 'u'), self.X) else: topography_form = subject(prognostic( - topog * div(b*w) * dx + jump(b*w, n) * avg(topog) * dS, 'u'), self.X) residual += topography_form self.residual = residual
[docs] def compute_saturation(self, X): # Returns the saturation expression as a function of the # parameters specified in self.parameters and the input # functions X. The latter are left as inputs to the # function so that it can also be used for initialisation q0 = self.parameters.q0 nu = self.parameters.nu g = self.parameters.g H = self.parameters.H D, b = split(X)[1:3] topog = self.topog if topog is None: sat_expr = q0*H/(D) * exp(nu*(1-b/g)) else: sat_expr = q0*H/(D+topog) * exp(nu*(1-b/g)) return sat_expr
[docs] class LinearThermalShallowWaterEquations(ThermalShallowWaterEquations): u""" Class for the linear (rotating) thermal shallow-water equations, which describe the velocity 'u' and depth field 'D', solving some variant of: \n ∂u/∂t + f×u + bbar*∇D + 0.5*H*∇b = 0, \n ∂D/∂t + H*∇.(u) = 0, \n ∂b/∂t + u.∇bbar = 0, \n ∂q_t/∂t + u.∇(q_tbar) = 0, \n for mean depth 'H', mean buoyancy `bbar`, Coriolis parameter 'f' This is set up from the underlying :class:`ThermalShallowWaterEquations`, which is then linearised. """ def __init__(self, domain, parameters, equivalent_buoyancy=False, fexpr=None, topog_expr=None, space_names=None, linearisation_map='default', u_transport_option="vector_invariant_form", no_normal_flow_bc_ids=None, active_tracers=None): """ Args: domain (:class:`Domain`): the model's domain object, containing the mesh and the compatible function spaces. parameters (:class:`Configuration`, optional): an object containing the model's physical parameters. equivalent_buoyancy (bool, optional): switch to specify formulation (see comments above). Defaults to False to give standard thermal shallow water. fexpr (:class:`ufl.Expr`, optional): an expression for the Coroilis parameter. Defaults to None. topog_expr (:class:`ufl.Expr`, optional): an expression for the bottom surface of the fluid. Defaults to None. space_names (dict, optional): a dictionary of strings for names of the function spaces to use for the spatial discretisation. The keys are the names of the prognostic variables. Defaults to None in which case the spaces are taken from the de Rham complex. Any buoyancy variable is taken by default to lie in the L2 space. linearisation_map (func, optional): a function specifying which terms in the equation set to linearise. If None is specified then no terms are linearised. Defaults to the string 'default', in which case the linearisation includes both time derivatives, the 'D' transport term, pressure gradient and Coriolis terms. u_transport_option (str, optional): specifies the transport term used for the velocity equation. Supported options are: 'vector_invariant_form', 'vector_advection_form' and 'circulation_form'. Defaults to 'vector_invariant_form'. no_normal_flow_bc_ids (list, optional): a list of IDs of domain boundaries at which no normal flow will be enforced. Defaults to None. active_tracers (list, optional): a list of `ActiveTracer` objects that encode the metadata for any active tracers to be included in the equations. Defaults to None. """ super().__init__(domain, parameters, equivalent_buoyancy=equivalent_buoyancy, fexpr=fexpr, topog_expr=topog_expr, space_names=space_names, linearisation_map=linearisation_map, u_transport_option=u_transport_option, no_normal_flow_bc_ids=no_normal_flow_bc_ids, active_tracers=active_tracers) # Use the underlying routine to do a first linearisation of the equations self.linearise_equation_set()
[docs] class ShallowWaterEquations_1d(PrognosticEquationSet): u""" Class for the (rotating) 1D shallow-water equations, which describe the velocity 'u', 'v' and the depth field 'D', solving some variant of: \n ∂u/∂t + u∂u/∂x - fv + g*∂D/∂x = 0, \n ∂v/∂t + fu = 0, \n ∂D/∂t + ∂(uD)/∂x = 0, \n for mean depth 'H', Coriolis parameter 'f' and gravity 'g'. Args: domain (:class:`Domain`): the model's domain object, containing the mesh and the compatible function spaces. parameters (:class:`Configuration`, optional): an object containing the model's physical parameters. fexpr (:class:`ufl.Expr`, optional): an expression for the Coroilis parameter. Defaults to None. space_names (dict, optional): a dictionary of strings for names of the function spaces to use for the spatial discretisation. The keys are the names of the prognostic variables. Defaults to None in which case the spaces are taken from the de Rham complex. linearisation_map (func, optional): a function specifying which terms in the equation set to linearise. If None is specified then no terms are linearised. Defaults to the string 'default', in which case the linearisation includes both time derivatives, the 'D' transport term, pressure gradient and Coriolis terms. no_normal_flow_bc_ids (list, optional): a list of IDs of domain boundaries at which no normal flow will be enforced. Defaults to None. active_tracers (list, optional): a list of `ActiveTracer` objects that encode the metadata for any active tracers to be included in the equations. Defaults to None. """ def __init__(self, domain, parameters, fexpr=None, space_names=None, linearisation_map='default', diffusion_options=None, no_normal_flow_bc_ids=None, active_tracers=None): field_names = ['u', 'v', 'D'] space_names = {'u': 'HDiv', 'v': 'L2', 'D': 'L2'} if active_tracers is not None: raise NotImplementedError('Tracers not implemented for 1D shallow water equations') if linearisation_map == 'default': # Default linearisation is time derivatives, pressure gradient, # Coriolis and transport term from depth equation linearisation_map = lambda t: \ (any(t.has_label(time_derivative, pressure_gradient, coriolis)) or (t.get(prognostic) == 'D' and t.has_label(transport))) super().__init__(field_names, domain, space_names, linearisation_map=linearisation_map, no_normal_flow_bc_ids=no_normal_flow_bc_ids, active_tracers=active_tracers) self.parameters = parameters g = parameters.g H = parameters.H w1, w2, phi = self.tests u, v, D = split(self.X) u_trial = split(self.trials)[0] # -------------------------------------------------------------------- # # Time Derivative Terms # -------------------------------------------------------------------- # mass_form = self.generate_mass_terms() # -------------------------------------------------------------------- # # Transport Terms # -------------------------------------------------------------------- # # Velocity transport term u_adv = prognostic(advection_form_1d(w1, u, u), 'u') v_adv = prognostic(advection_form_1d(w2, v, u), 'v') # Depth transport term D_adv = prognostic(continuity_form_1d(phi, D, u), 'D') # Transport term needs special linearisation if self.linearisation_map(D_adv.terms[0]): linear_D_adv = linear_continuity_form(phi, H, u_trial) # Add linearisation to D_adv D_adv = linearisation(D_adv, linear_D_adv) adv_form = subject(u_adv + v_adv + D_adv, self.X) pressure_gradient_form = pressure_gradient(subject( prognostic(-g * D * w1.dx(0) * dx, "u"), self.X)) self.residual = (mass_form + adv_form + pressure_gradient_form) if fexpr is not None: V = FunctionSpace(domain.mesh, 'CG', 1) f = self.prescribed_fields('coriolis', V).interpolate(fexpr) coriolis_form = coriolis(subject( prognostic(-f * v * w1 * dx, "u") + prognostic(f * u * w2 * dx, "v"), self.X)) self.residual += coriolis_form if diffusion_options is not None: for field, diffusion in diffusion_options: idx = self.field_names.index(field) test = self.tests[idx] fn = split(self.X)[idx] self.residual += subject( prognostic(diffusion_form_1d(test, fn, diffusion.kappa), field), self.X) # -------------------------------------------------------------------- # # Linearise equations # -------------------------------------------------------------------- # # Add linearisations to equations self.residual = self.generate_linear_terms(self.residual, self.linearisation_map)
[docs] class LinearShallowWaterEquations_1d(ShallowWaterEquations_1d): u""" Class for the linear (rotating) 1D shallow-water equations, which describe the velocity 'u', 'v' and the depth field 'D', solving some variant of: \n ∂u/∂t - fv + g*∂D/∂x = 0, \n ∂v/∂t + fu = 0, \n ∂D/∂t + H*∂u/∂x = 0, \n for mean depth 'H', Coriolis parameter 'f' and gravity 'g'. This is set up the from the underlying :class:`ShallowWaterEquations_1d`, which is then linearised. """ def __init__(self, domain, parameters, fexpr=None, space_names=None, linearisation_map='default', no_normal_flow_bc_ids=None, active_tracers=None): """ Args: domain (:class:`Domain`): the model's domain object, containing the mesh and the compatible function spaces. parameters (:class:`Configuration`, optional): an object containing the model's physical parameters. fexpr (:class:`ufl.Expr`, optional): an expression for the Coroilis parameter. Defaults to None. space_names (dict, optional): a dictionary of strings for names of the function spaces to use for the spatial discretisation. The keys are the names of the prognostic variables. Defaults to None in which case the spaces are taken from the de Rham complex. Any buoyancy variable is taken by default to lie in the L2 space. linearisation_map (func, optional): a function specifying which terms in the equation set to linearise. If None is specified then no terms are linearised. Defaults to the string 'default', in which case the linearisation includes both time derivatives, the 'D' transport term, pressure gradient and Coriolis terms. no_normal_flow_bc_ids (list, optional): a list of IDs of domain boundaries at which no normal flow will be enforced. Defaults to None. active_tracers (list, optional): a list of `ActiveTracer` objects that encode the metadata for any active tracers to be included in the equations. Defaults to None. """ super().__init__(domain, parameters, fexpr=fexpr, space_names=space_names, linearisation_map=linearisation_map, no_normal_flow_bc_ids=no_normal_flow_bc_ids, active_tracers=active_tracers) # Use the underlying routine to do a first linearisation of the equations self.linearise_equation_set()