Source code for gusto.core.configuration

"""Some simple tools for configuring the model."""
from abc import ABCMeta, abstractproperty
from enum import Enum
from firedrake import sqrt


__all__ = [
    "Configuration",
    "IntegrateByParts", "TransportEquationType", "OutputParameters",
    "EmbeddedDGOptions", "ConservativeEmbeddedDGOptions", "RecoveryOptions",
    "ConservativeRecoveryOptions", "SUPGOptions", "MixedFSOptions",
    "SubcyclingOptions"
]


[docs] class IntegrateByParts(Enum): """Enumerator for setting the number of times to integrate by parts.""" NEVER = 0 ONCE = 1 TWICE = 2
[docs] class TransportEquationType(Enum): u""" Enumerator for describing types of transport equation. For transporting velocity 'u' and transported quantity 'q', different types of transport equation include: \n advective: ∂q/∂t + (u.∇)q = 0 \n conservative: ∂q/∂t + ∇.(u*q) = 0 \n vector_invariant: ∂q/∂t + (∇×q)×u + (1/2)∇(q.u) + (1/2)[(∇q).u -(∇u).q)] = 0 circulation: ∂q/∂t + (∇×q)×u + non-transport terms = 0 tracer_conservative: ∂(q*rho)/∂t + ∇.(u*q*rho) = 0, for a reference density of rho for the tracer, q. """ no_transport = 702 advective = 19 conservative = 291 vector_invariant = 9081 circulation = 512 tracer_conservative = 296
[docs] class Configuration(object): """A base configuration object, for storing aspects of the model.""" def __init__(self, **kwargs): """ Args: **kwargs: attributes and their values to be stored in the object. """ for name, value in kwargs.items(): self.__setattr__(name, value) def __setattr__(self, name, value): """ Sets the model configuration attributes. When attributes are provided as floats or integers, these are converted to Firedrake :class:`Constant` objects, other than a handful of special integers. Args: name: the attribute's name. value: the value to provide to the attribute. Raises: AttributeError: if the :class:`Configuration` object does not have this attribute pre-defined. """ if not hasattr(self, name): raise AttributeError(f"{type(self).__name__} object has no attribute {name}.") # Almost all parameters should be functions on the real space # -- but there are some specific exceptions which should be # kept as integers non_constants = [ 'dumpfreq', 'pddumpfreq', 'chkptfreq', 'fixed_subcycles', 'max_subcycles', 'subcycle_by_courant' ] if type(value) in [float, int] and name not in non_constants: raise AttributeError(f"Attribute {name} requires a mesh.") object.__setattr__(self, name, value)
[docs] class OutputParameters(Configuration): """Parameters for controlling outputting.""" dump_vtus = True dump_nc = False dumpfreq = 1 pddumpfreq = None dumplist = None dumplist_latlon = [] dump_diagnostics = True diagfreq = 1 checkpoint = False checkpoint_method = 'checkpointfile' checkpoint_pickup_filename = None chkptfreq = 1 dirname = None log_courant = True #: TODO: Should the output fields be interpolated or projected to #: a linear space? Default is interpolation. project_fields = False #: List of ordered pairs (name, points) where name is the field # name and points is the points at which to dump them point_data = [] tolerance = None
class WrapperOptions(Configuration, metaclass=ABCMeta): """Base class for specifying options for a transport scheme.""" @abstractproperty def name(self): pass
[docs] class EmbeddedDGOptions(WrapperOptions): """Specifies options for an embedded DG method.""" name = "embedded_dg" project_back_method = 'project' embedding_space = None
[docs] class ConservativeEmbeddedDGOptions(EmbeddedDGOptions): """Specifies options for a conservative embedded DG method.""" project_back_method = 'conservative_project' rho_name = None orig_rho_space = None
[docs] class RecoveryOptions(WrapperOptions): """Specifies options for a recovery wrapper method.""" name = "recovered" embedding_space = None recovered_space = None boundary_method = None injection_method = 'interpolate' project_high_method = 'interpolate' project_low_method = 'project' broken_method = 'interpolate'
[docs] class ConservativeRecoveryOptions(RecoveryOptions): """Specifies options for a conservative recovery wrapper method.""" rho_name = None orig_rho_space = None project_high_method = 'conservative_project' project_low_method = 'conservative_project'
[docs] class SUPGOptions(WrapperOptions): """Specifies options for an SUPG scheme.""" name = "supg" tau = None default = 1/sqrt(15) ibp = IntegrateByParts.TWICE # Dictionary containing keys field_name and values term_labels # field_name (str): name of the field for SUPG to be applied to # term_label (list): labels of terms for test function to be altered # by SUPG suboptions = None
[docs] class MixedFSOptions(WrapperOptions): """Specifies options for a mixed finite element formulation where different suboptions are applied to different prognostic variables.""" name = "mixed_options" # Dictionary containing keys field_name and values suboption # field_name (str): name of the field for suboption to be applied to # suboption (:class:`WrapperOptions`): Wrapper options to be applied # to the provided field suboptions = None
[docs] class SubcyclingOptions(Configuration): """ Describes the process of subcycling a time discretisation, by dividing the time step into a number of smaller substeps. NB: cannot provide both the fixed_subcycles and max_subcycles parameters, which will raise an error. """ # Either None, or an integer, giving the number of subcycles to take fixed_subcycles = None # If adaptive subcycling, the maximum number of subcycles to take max_subcycles = 10 # Either None or a float, giving the maximum Courant number for one step subcycle_by_courant = None
[docs] def check_options(self): """Checks that the subcycling options are valid.""" if (self.fixed_subcycles is not None and self.subcycle_by_courant is not None): raise ValueError( "Cannot provide both fixed_subcycles and subcycle_by_courant" + "parameters.")