Where has all my sand gone? Hydro-morphodynamics 2D modelling using a discontinuous Galerkin discretisation

Mariana Clare*

Co-authors: Prof. Matthew Piggott*, Dr. James Percival*, Dr. Athanasios Angeloudis** & Dr. Colin Cotter*

*Imperial College London **University of Edinburgh

Firedrake Conference, 26th - 27th September 2019

Imperial College London Introduction

Building a hydro-morphodynamics 2D model in Thetis

Migrating Trench

Meander

Conclusion

Introduction

_

February 2014 in Dawlish, Devon

Introduction

February 2014 in Dawlish, Devon

This cost £35 million to fix and is estimated to have cost the Cornish economy £1.2 billion

Overengineering...

Building a hydro-morphodynamics 2D model in *Thetis*

Sediment Transport

Adapted from http://geologycafe.com/class/chapter11.html

Depth-averaging from the bed to the water-surface and filtering turbulence:

Hydrodynamics

$$\frac{\partial h}{\partial t} + \frac{\partial}{\partial x}(hU_1) + \frac{\partial}{\partial y}(hU_2) = 0, \qquad (1)$$

$$\frac{\partial (hU_i)}{\partial t} + \frac{\partial (hU_iU_1)}{\partial x} + \frac{\partial (hU_iU_2)}{\partial y} = -gh\frac{\partial z_s}{\partial x_i} + \frac{1}{\rho}\frac{\partial (hT_{i1})}{\partial x} + \frac{1}{\rho}\frac{\partial (hT_{i2})}{\partial y} - \frac{\tau_{bi}}{\rho}, \qquad (2)$$

Depth-averaging from the bed to the water-surface and filtering turbulence:

Conservation of suspended sediment

$$\frac{\partial}{\partial t}(hC) + \frac{\partial}{\partial x}(hF_{\text{corr}}U_1C) + \frac{\partial}{\partial y}(hF_{\text{corr}}U_2C) = \frac{\partial}{\partial x}\left[h\left(\epsilon_s\frac{\partial C}{\partial x}\right)\right] + \frac{\partial}{\partial y}\left[h\left(\epsilon_s\frac{\partial C}{\partial y}\right)\right] + E_b - D_b, \quad (1)$$

where z_s is the fluid surface, τ_{bi} the bed shear stress, T_{ij} the depth-averaged stresses, ϵ_s the diffusivity constant and F_{corr} the correction factor.

Bedlevel (z_b) is governed by the Exner equation

$$\frac{(1-p')}{m}\frac{dz_b}{dt} + \nabla_h \cdot \mathbf{Q_b} = D_b - E_b, \qquad (2)$$

where:

 Q_b is the bedload transport given by Meyer-Peter-Müller formula, $D_b - E_b$ accounts for effects of suspended sediment flow, m is a morphological factor accelerating bedlevel changes.

Adding Physical Effects

Slope Effect

Accounts for gravity which means sediment moves slower uphill than downhill. We impose a magnitude correction:

$$\mathbf{Q}_{\mathbf{b}*} = \mathbf{Q}_{\mathbf{b}} \left(1 - \Upsilon \frac{\partial Z_{b}}{\partial S} \right),$$

and a correction on the flow direction (where δ is the original angle)

$$an lpha = an \delta - T rac{\partial Z_b}{\partial n}.$$

Secondary Current

Accounts for the helical flow effect in curved channels

Comparing with Industry Standard Model

Thetis

DG finite element discretisation with $\label{eq:posterior} P_{1\mathrm{DG}} - P_{1\mathrm{DG}}$

- + Locally mass conservative
- + Well-suited to advection dominated problems
- + Geometrically flexible
- + Allow higher order local approximations

Comparing with Industry Standard Model

Thetis

DG finite element discretisation with $\label{eq:posterior} P_{1\mathrm{DG}} - P_{1\mathrm{DG}}$

- + Locally mass conservative
- + Well-suited to advection dominated problems
- + Geometrically flexible
- + Allow higher order local approximations

Telemac-Mascaret

CG finite element discretisation

Method of characteristics (hydrodynamics advection)

- + Unconditionally stable
- Not mass conservative
- Diffusive for small timesteps

Distributive schemes (sediment transport advection)

- + Mass conservative
- Diffusive for small timesteps
- Courant number limitations to ensure stability

Migrating Trench

Migrating Trench: Initial Set-up

Bedlevel after 15 h for different morphological scale factors comparing experimental data, Sisyphe and Thetis with $\Delta t = 0.05$ s. Experimental data and initial trench profile source: Villaret et al. (2016)

Migrating Trench: Issues with Sisyphe

Varying Δt

Migrating Trench: Varying Diffusivity

$$\frac{\partial}{\partial t}(hC) + \frac{\partial}{\partial x}(hF_{\rm corr}U_1C) + \frac{\partial}{\partial y}(hF_{\rm corr}U_2C) = \frac{\partial}{\partial x}\left[h\left(\epsilon_s\frac{\partial C}{\partial x}\right)\right] + \frac{\partial}{\partial y}\left[h\left(\epsilon_s\frac{\partial C}{\partial y}\right)\right] + E_b - D_b, \quad (3)$$

Sensitivity of Sisyphe to $\epsilon_{
m S}$

Sensitivity of Thetis to ϵ_{s}

Thetis

14

Migrating Trench: Final Result

Bedlevel from Thetis and Sisyphe after 15 h

Migrating Trench: Simulation

Meander

Meander: Initial Set-up

Meander mesh and domain

Meander: Boundary Issue

Issue in velocity resolution at boundary resolved by increasing viscosity

Meander: Physical Effects

corrections

Only slope effec magnitude Both slope effec corrections All physical corrections

Meander: Sensitivity to Δt

Sisyphe sensitive to changes in Δt

Thetis insensitive to changes in Δt

Meander: Final Result

Comparing scaled bedlevel evolution from Thetis, Sisyphe and experimental data

Meander: Simulation

	Sisyphe	Thetis	Thetis (morphological scale factor)	Thetis (morphological scale factor, increased Δt)
Migrating Trench	3,427	341,717	39,955	12,422
Meander	980	60,784	10,811	1,212

Comparison of computational time (seconds). For the migrating trench, $\Delta t = 0.05 \text{ s}$ and increased $\Delta t = 0.3 \text{ s}$; for the meander $\Delta t = 0.1 \text{ s}$ and increased $\Delta t = 10 \text{ s}$. Conclusion

1. Presented the first full morphodynamic model employing a DG based discretisation;

- 1. Presented the first full morphodynamic model employing a DG based discretisation;
- 2. Reported on several new capabilities within *Thetis*, including bedload transport, bedlevel changes, slope effect corrections, a secondary current correction, a sediment transport source term, a velocity correction factor in the sediment concentration equation, and a morphological scale factor;

- 1. Presented the first full morphodynamic model employing a DG based discretisation;
- 2. Reported on several new capabilities within *Thetis*, including bedload transport, bedlevel changes, slope effect corrections, a secondary current correction, a sediment transport source term, a velocity correction factor in the sediment concentration equation, and a morphological scale factor;
- 3. Validated our model for two different test cases;

- 1. Presented the first full morphodynamic model employing a DG based discretisation;
- 2. Reported on several new capabilities within *Thetis*, including bedload transport, bedlevel changes, slope effect corrections, a secondary current correction, a sediment transport source term, a velocity correction factor in the sediment concentration equation, and a morphological scale factor;
- 3. Validated our model for two different test cases;
- 4. Shown our model is both accurate and stable, and has key advantages in robustness and accuracy over the state-of-the-art industry standard Siyphe whilst still being comparable in computational cost

Key References

- Kärnä, T., Kramer, S.C., Mitchell, L., Ham, D.A., Piggott, M.D. and Baptista, A.M. (2018), 'Thetis coastal ocean model: discontinuous Galerkin discretization for the threedimensional hydrostatic equations', *Geoscientific Model Development*, **11**, 4359-4382.

Tassi, P. and Villaret, C. (2014), *Sisyphe v6.3 User's Manual*, EDF R&D, Chatou, France. Available at:

http://www.opentelemac.org/downloads/MANUALS/SISYPHE/sisyphe

- Villaret, C., Kopmann, R., Wyncoll, D., Riehme, J., Merkel, U. and Naumann, U. (2016), 'First-order uncertainty analysis using Algorithmic Differentiation of morphodynamic models', *Computers & Geosciences*, **90**, 144-151.

Villaret, C., Hervouet, J.-M., Kopmann, R., Merkel, U., and Davies, A. G. (2013), 'Morphodynamic modeling using the telemac finite-element system,'*Com- puters* & *Geosciences*, **53**, 105-113.

Questions?

Using DG:

- $\cdot\,$ Generate a mesh of elements over domain $\Omega\,$
- Define finite element space on a triangulation (a set of triangles which do not overlap and the union of which is equal to the closure of Ω)
- Derive the weak form of the equation on each triangular element by multiplying the equation by a test function and integrating it by parts on each element and using divergence theorem

Using a discontinuous function space requires the definition of the variables on the element edges thus we use the average and jump operators

$$\{\{X\}\} = \frac{1}{2}(X^{+} + X^{-}), \quad [[\chi]]_{n} = \chi^{+}n^{+} + \chi^{-}n^{-}, \quad [[X]]_{n} = X^{+} \cdot n^{+} + X^{-} \cdot n^{-}.$$
 (4)

For *C*, we use an upwinding scheme, so, at each edge, *C* is chosen to be equal to its upstream value with respect to velocity. Therefore

$$\int_{\Omega} \psi \mathbf{u} \cdot \nabla_h C dx = -\int_{\Omega} C \nabla_h \cdot (\mathbf{u}\psi) dx + \int_{\Gamma} C^{\mathrm{up}} \left[[\psi \mathbf{u}] \right]_{\mathrm{n}} ds.$$
(5)

25

Weak form of diffusivity term uses Symmetric Interior Penalty Galerkin (SIPG) stabilisation method, as if not discretisation unstable for elliptic operators

$$-\int_{\Omega}\psi\nabla_{h}\cdot(\epsilon_{s}\nabla_{h}C)dx = \int_{\Omega}\epsilon_{s}(\nabla_{h}\psi)\cdot(\nabla_{h}C)dx - \int_{\Gamma}[[\psi]]_{n}\cdot\{\{\epsilon_{s}\nabla_{h}C\}\}ds$$
$$-\int_{\Gamma}[[C]]_{n}\cdot\{\{\epsilon_{s}\nabla_{h}\psi\}\}ds + \int_{\Gamma}\sigma\{\{\epsilon_{s}\}\}[[C]]_{n}\cdot[[\psi]]_{n}ds.$$
(6)