Source code for irksome.discontinuous_galerkin_stepper

from FIAT import (Bernstein, DiscontinuousElement,
                  DiscontinuousLagrange,
                  Legendre,
                  make_quadrature, ufc_simplex)
from ufl.constantvalue import as_ufl
from .base_time_stepper import StageCoupledTimeStepper
from .bcs import stage2spaces4bc
from .deriv import expand_time_derivatives
from .manipulation import extract_terms, strip_dt_form
from .tools import replace, vecconst
import numpy as np
from firedrake import TestFunction


[docs] def getFormDiscGalerkin(F, L, Q, t, dt, u0, stages, bcs=None): """Given a time-dependent variational form, trial and test spaces, and a quadrature rule, produce UFL for the Discontinuous Galerkin-in-Time method. :arg F: UFL form for the semidiscrete ODE/DAE :arg L: A :class:`FIAT.FiniteElement` for the test and trial functions in time :arg Q: A :class:`FIAT.QuadratureRule` for the time integration :arg t: a :class:`Function` on the Real space over the same mesh as `u0`. This serves as a variable referring to the current time. :arg dt: a :class:`Function` on the Real space over the same mesh as `u0`. This serves as a variable referring to the current time step. The user may adjust this value between time steps. :arg u0: a :class:`Function` referring to the state of the PDE system at time `t` :arg stages: a :class:`Function` representing the stages to be solved for. :arg bcs: optionally, a :class:`DirichletBC` object (or iterable thereof) containing (possibly time-dependent) boundary conditions imposed on the system. :arg nullspace: A list of tuples of the form (index, VSB) where index is an index into the function space associated with `u` and VSB is a :class: `firedrake.VectorSpaceBasis` instance to be passed to a `firedrake.MixedVectorSpaceBasis` over the larger space associated with the Runge-Kutta method On output, we return a tuple consisting of four parts: - Fnew, the :class:`Form` corresponding to the DG-in-Time discretized problem - `bcnew`, a list of :class:`firedrake.DirichletBC` objects to be posed on the Galerkin-in-time solution, """ assert Q.ref_el.get_spatial_dimension() == 1 assert L.get_reference_element() == Q.ref_el # preprocess time derivatives F = expand_time_derivatives(F, t=t, timedep_coeffs=(u0,)) v, = F.arguments() V = v.function_space() assert V == u0.function_space() num_stages = L.space_dimension() Vbig = stages.function_space() test = TestFunction(Vbig) qpts = Q.get_points() qwts = Q.get_weights() tabulate_basis = L.tabulate(1, qpts) basis_vals = tabulate_basis[(0,)] basis_dvals = tabulate_basis[(1,)] basis_vals_w = np.multiply(basis_vals, qwts) # mass matrix later for BC mmat = basis_vals_w @ basis_vals.T # L2 projector proj = vecconst(np.linalg.solve(mmat, basis_vals_w)) trial_vals = vecconst(basis_vals) trial_dvals = vecconst(basis_dvals) test_vals_w = vecconst(basis_vals_w) qpts = vecconst(qpts.reshape((-1,))) split_form = extract_terms(F) F_dtless = strip_dt_form(split_form.time) F_remainder = split_form.remainder # set up the pieces we need to work with to do our substitutions v_np = np.reshape(test, (num_stages, *u0.ufl_shape)) u_np = np.reshape(stages, (num_stages, *u0.ufl_shape)) vsub = test_vals_w.T @ v_np usub = trial_vals.T @ u_np dtu0sub = trial_dvals.T @ u_np # Jump terms L_at_0 = vecconst(L.tabulate(0, (0.0,))[(0,)]) u_at_0 = L_at_0 @ u_np v_at_0 = L_at_0 @ v_np repl = {u0: u_at_0 - u0, v: v_at_0} Fnew = replace(F_dtless, repl) # Terms with time derivatives for q in range(len(qpts)): repl = {t: t + qpts[q] * dt, v: vsub[q] * dt, u0: dtu0sub[q] / dt} Fnew += replace(F_dtless, repl) # Handle the rest of the terms for q in range(len(qpts)): repl = {t: t + qpts[q] * dt, v: vsub[q] * dt, u0: usub[q]} Fnew += replace(F_remainder, repl) # Oh, honey, is it the boundary conditions? if bcs is None: bcs = [] bcsnew = [] for bc in bcs: g0 = as_ufl(bc._original_arg) Vg_np = np.array([replace(g0, {t: t + c*dt}) for c in qpts]) g_np = proj @ Vg_np for i in range(num_stages): Vbigi = stage2spaces4bc(bc, V, Vbig, i) bcsnew.append(bc.reconstruct(V=Vbigi, g=g_np[i])) return Fnew, bcsnew
[docs] class DiscontinuousGalerkinTimeStepper(StageCoupledTimeStepper): """Front-end class for advancing a time-dependent PDE via a Discontinuous Galerkin in time method :arg F: A :class:`ufl.Form` instance describing the semi-discrete problem F(t, u; v) == 0, where `u` is the unknown :class:`firedrake.Function and `v` is the :class:firedrake.TestFunction`. :arg order: an integer indicating the order of the DG space to use (with order == 0 corresponding to DG(0)-in-time) :arg t: a :class:`Function` on the Real space over the same mesh as `u0`. This serves as a variable referring to the current time. :arg dt: a :class:`Function` on the Real space over the same mesh as `u0`. This serves as a variable referring to the current time step. The user may adjust this value between time steps. :arg u0: A :class:`firedrake.Function` containing the current state of the problem to be solved. :arg bcs: An iterable of :class:`firedrake.DirichletBC` containing the strongly-enforced boundary conditions. Irksome will manipulate these to obtain boundary conditions for each stage of the method. :arg basis_type: A string indicating the finite element family (either `'Lagrange'` or `'Bernstein'`) or the Lagrange variant for the test/trial spaces. Defaults to equispaced Lagrange elements. :arg quadrature: A :class:`FIAT.QuadratureRule` indicating the quadrature to be used in time, defaulting to GL with order+1 points :arg solver_parameters: A :class:`dict` of solver parameters that will be used in solving the algebraic problem associated with each time step. :arg appctx: An optional :class:`dict` containing application context. This gets included with particular things that Irksome will pass into the nonlinear solver so that, say, user-defined preconditioners have access to it. :arg nullspace: A list of tuples of the form (index, VSB) where index is an index into the function space associated with `u` and VSB is a :class: `firedrake.VectorSpaceBasis` instance to be passed to a `firedrake.MixedVectorSpaceBasis` over the larger space associated with the Runge-Kutta method """ def __init__(self, F, order, t, dt, u0, bcs=None, basis_type=None, quadrature=None, solver_parameters=None, appctx=None, nullspace=None): assert order >= 0 self.order = order self.basis_type = basis_type V = u0.function_space() self.num_fields = len(V) ufc_line = ufc_simplex(1) if order == 0: self.el = DiscontinuousLagrange(ufc_line, order) elif basis_type == "Bernstein": self.el = DiscontinuousElement(Bernstein(ufc_line, order)) elif basis_type == "integral": self.el = Legendre(ufc_line, order) else: # Let recursivenodes handle the general case variant = None if basis_type == "Lagrange" else basis_type self.el = DiscontinuousLagrange(ufc_line, order, variant=variant) if quadrature is None: quadrature = make_quadrature(ufc_line, order+1) self.quadrature = quadrature assert np.size(quadrature.get_points()) >= order+1 num_stages = order+1 self.update_b = vecconst(self.el.tabulate(0, (1.0,))[(0,)]) super().__init__(F, t, dt, u0, num_stages, bcs=bcs, solver_parameters=solver_parameters, appctx=appctx, nullspace=nullspace)
[docs] def get_form_and_bcs(self, stages): return getFormDiscGalerkin(self.F, self.el, self.quadrature, self.t, self.dt, self.u0, stages, self.orig_bcs)
def _update(self): for i, u0bit in enumerate(self.u0.subfunctions): u0bit.assign(np.dot(self.stages.subfunctions[i::self.num_fields], self.update_b))