



# PCPATCH: topological construction of multigrid relaxation methods

Lawrence Mitchell<sup>1,\*</sup> P. E. Farrell (Oxford) M. G. Knepley (Buffalo) F. Wechsung (Oxford) September 27, 2019

<sup>1</sup>Department of Computer Science, Durham University \*lawrence.mitchell@durham.ac.uk

#### Coupled multigrid for Stokes/Navier-Stokes

In the SCGS scheme four velocites and one pressure corresponding to one finite difference node are simultaneously updated by inverting a (small) matrix of equations.



Vanka (1986)

#### *p*-independent preconditioners for elliptic problems

[Each subspace is generated from]  $V_i^p = V^p \cap H_0^1(\Omega_i')$  where  $\Omega_i'$  is the open square centered at the ith vertex



Pavarino (1993)

#### Multigrid for nearly incompressible elasticity

The suggested smoother is a block Jacobi smoother, which takes care of the kernel [...]. These kernel basis functions are captured by subspaces  $V_{l,i}$  as shown



Schöberl (1999)

#### Multigrid in *H*(div) and *H*(curl)

To define the Schwarz smoothers, we can use a decomposition of V<sub>h</sub> into local patches consisting of all elements surrounding either an edge or a vertex.



Arnold, Falk, and Winther (2000)

#### An augmented Lagrangian approach to the Oseen problem

We use a block Gauss-Seidel method [...] based on the decomposition  $V_h = \sum_{i=0}^{l} V_i$ . [...For] P2-P0 finite elements the natural choice is to gather nodel DOFs for velocity inside ovals [around a vertex]



#### Benzi and Olshanskii (2006)

#### Augmented Lagrangian for 3D Navier-Stokes



#### Farrell, Mitchell, and Wechsung (2018)

Find  $u \in V$  such that

a(u, v) = (f, v) for all  $v \in V$ .

**input** : Space decomposition  $V = \sum_{i=1}^{J} V_i$  **input** : Initial guess  $u_k \in V$  **input** : Weighting operators  $w_i : V_i \rightarrow V_i$ **output:** Updated guess  $u_{k+1} \in V$ 

```
for i = 1 to J do
Find \delta u_i \in V_i such that
```

$$a(\delta u_i, v_i) = (f, v_i) - a(u_k, v_i)$$
 for all  $v_i \in V_i$ .

end

 $u_{k+1} \leftarrow u_k + \sum_{i=1}^J w_i(\delta u_i)$ 

Find  $u \in V$  such that

a(u, v) = (f, v) for all  $v \in V$ .

**input** : Space decomposition  $V = \sum_{i=1}^{J} V_i$  **input** : Initial guess  $u_k \in V$ **output**: Updated guess  $u_{k+1} \in V$ 

for i = 1 to J do Find  $\delta u_i \in V_i$  such that  $a(\delta u_i, v_i) = (f, v_i) - a(u_{k+(i-1)/J}, v_i)$  for all  $v_i \in V_i$ .  $u_{k+i/J} \leftarrow u_{k+(i-1)/J} + \delta u_i$ end

# Example space decompositions

Jacobi or Gauß-Seidel

 $V = \sum_{i=1}^{N} \operatorname{span}\{\phi_i\}$ 

with  $\{\phi_1, \ldots, \phi_N\}$  a basis for V.

Domain decomposition

$$V = V_0 + \sum_{i=1}^J V_i$$

with  $V_0$  a coarse space and  $V_i$  functions supported in  $\Omega_i \subset \Omega$ .

Multigrid V-cycle

$$V = \sum_{l=L}^{2} V_{l} + V_{1} + \sum_{l=2}^{L} V_{l}$$

with  $V_1 \subset V_2 \subset \cdots \subset V_L = V$ .

Relaxation schemes all use subspace correction method with problem-specific choice of space decomposition.

- Decompose space (usually) based on some mesh decomposition
- $\cdot\,$  Build and solve little problems on the resulting patches
- Combine additively or multiplicatively

Relaxation schemes all use subspace correction method with problem-specific choice of space decomposition.

- Decompose space (usually) based on some mesh decomposition
- Build and solve little problems on the resulting patches
- Combine additively or multiplicatively

#### Challenge

Want to do this inside block preconditioners, and as a multigrid smoother.

Not sufficient to specify dof decomposition on a (single) global matrix.



## **PCPATCH**

#### Requirements

- Want *flexible*  $PC \Rightarrow$  change decomposition easily
- Need to nest inside more complex solvers

## PCPATCH

#### Requirements

- · Want flexible PC  $\Rightarrow$  change decomposition easily
- Need to nest inside more complex solvers

#### Idea

- · Separate topological decomposition from algebraic operators
- User only provides topological description of patches
- Ask discretisation library to make the operators once decomposition is obtained

## PCPATCH

#### Idea

- · Separate topological decomposition from algebraic operators
- · User only provides topological description of patches
- Ask discretisation library to make the operators once decomposition is obtained

#### Library support

• PETSc: DMPlex + PetscDS

```
-pc_type patch
```

- Firedrake:
  - -pc\_type python -pc\_python\_type firedrake.PatchPC

```
-snes_type python -snes_python_type firedrake.PatchSNES
```

- DMPlex associates dofs with topological entities in mesh
- A patch is defined by a set of these entities, **PCPATCH** determines the dofs that correspond to them
- Adjacency relations defined using topological queries: often the topological *star* and *closure* operations.

- $\cdot$  DMPlex associates dofs with topological entities in mesh
- A patch is defined by a set of these entities, **PCPATCH** determines the dofs that correspond to them
- Adjacency relations defined using topological queries: often the topological *star* and *closure* operations.



star(vertex)

- $\cdot$  DMPlex associates dofs with topological entities in mesh
- A patch is defined by a set of these entities, **PCPATCH** determines the dofs that correspond to them
- Adjacency relations defined using topological queries: often the topological *star* and *closure* operations.



- $\cdot$  DMPlex associates dofs with topological entities in mesh
- A patch is defined by a set of these entities, **PCPATCH** determines the dofs that correspond to them
- Adjacency relations defined using topological queries: often the topological *star* and *closure* operations.



star(edge)

- $\cdot$  DMPlex associates dofs with topological entities in mesh
- A patch is defined by a set of these entities, **PCPATCH** determines the dofs that correspond to them
- Adjacency relations defined using topological queries: often the topological *star* and *closure* operations.



• Each patch defined by set of mesh entities

#### Builtin

Specify patches by selecting:

- 1. Mesh entities  $\{p_i\}$  to iterate over (e.g. vertices, cells)
- 2. Adjacency relation that gathers points in patch
  - star entities in star(p<sub>i</sub>)
- **vanka** entities in  $(closure \circ star)(p_i)$

**pardecomp** entities in  $\Omega_i$  (local part of parallel mesh)

#### User-defined

- 1. Custom adjacency relation (e.g. "vertices in closure o star of edges")
- 2. List of patches, plus iteration order  $\Rightarrow$  line-/plane-smoothers

- ✓ If we just want homogeneous Dirichlet, can use list of dofs to select from assembled global operator
- ✓ Completely robust to discretisation library
- ✗ Doesn't allow matrix-free implementation
- ✗ Doesn't work for other transmission conditions
- ✗ Doesn't work for nonlinear smoothers
- $\Rightarrow$  Callback interface to get PDE library to assemble on each patch

#### Callbacks

```
/* Patch Jacobian */
UserComputeOp(PC, Vec state, Mat operator, Patch patch, void *userctx);
/* Patch Residual */
UserComputeF(PC, Vec state, Vec residual, Patch patch, void *userctx);
```

# Examples

Theorem (Parameter robust parallel subspace correction)

Find  $u \in V$  such that

$$a_0(u, v) + \varepsilon b(u, v) = (f, v)$$
 for all  $v \in V$ 

with a<sub>0</sub> symmetric positive definite and b symmetric positive semi-definite.

Denote the kernel

$$\mathcal{N} := \{ u \in V : b(u, v) = 0 \ \forall v \in V \}.$$

If the space decomposition captures the kernel

$$\mathcal{N} = \sum_{i} \mathcal{N} \cap V_{i},$$

the resulting subspace correction method has convergence independent of  $\varepsilon$  (Schöberl 1999).

#### Corollary

"All" we need to do is characterise the kernel: in particular the support of the basis.

#### Characterising the kernel

Appropriate discrete de Rham complexes can help us finding the support of a basis for  $\ensuremath{\mathcal{N}}.$ 

Examples

Find  $u \in V \subset H(\operatorname{div})$  s.t.  $(u, v)_{L^2} + \gamma(\operatorname{div} u, \operatorname{div} v)_{L^2} = (f, v)_{L^2} \quad \forall v \in V.$ 

L<sup>2</sup> de Rham complex

$$H^1 \xrightarrow{\operatorname{\mathsf{grad}}^{\perp}} H(\operatorname{\mathsf{div}}) \xrightarrow{\operatorname{\mathsf{div}}} L^2$$

Find  $u \in V \subset H(\operatorname{div})$  s.t.  $(u, v)_{L^2} + \gamma(\operatorname{div} u, \operatorname{div} v)_{L^2} = (f, v)_{L^2} \quad \forall v \in V.$ 

#### L<sup>2</sup> de Rham complex



#### femtable.org

Find  $u \in V \subset H(\operatorname{div})$  s.t.  $(u, v)_{L^2} + \gamma(\operatorname{div} u, \operatorname{div} v)_{L^2} = (f, v)_{L^2} \quad \forall v \in V.$ 

#### $L^2$ de Rham complex



#### femtable.org

- Exact sequence:  $ker(div) = range(grad^{\perp})$
- Need patches containing support of the  $P_k$  basis functions  $\Rightarrow$  star around vertices



#### Find $u \in V \subset H(\operatorname{div})$ s.t. $(u, v)_{L^2} + \gamma(\operatorname{div} u, \operatorname{div} v)_{L^2} = (f, v)_{L^2} \quad \forall v \in V.$

| <pre>-ksp_type cg<br/>-pc_type mg<br/>-mg_levels_<br/>-pc_type python<br/>-pc_python_type firedrake.PatchPC<br/>-patch_<br/>-pc_patch_construct_dim 0<br/>-pc_patch_construct_type star</pre> |                              |    |                  |                 |                 |                 |                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----|------------------|-----------------|-----------------|-----------------|-----------------|
|                                                                                                                                                                                               | Smoother \ $\gamma$          | 0  | 10 <sup>-1</sup> | 10 <sup>0</sup> | 10 <sup>1</sup> | 10 <sup>2</sup> | 10 <sup>3</sup> |
|                                                                                                                                                                                               | Point-Jacobi ( <i>k</i> = 1) | 11 | 27               | 49              | 68              | 86              | 103             |
|                                                                                                                                                                                               | Point-Jacobi ( <i>k</i> = 2) | 10 | 45               | 71              | 93              | 113             | 134             |
|                                                                                                                                                                                               | Block-Jacobi ( <i>k</i> = 1) | 6  | 11               | 12              | 12              | 12              | 12              |
|                                                                                                                                                                                               | Block-Jacobi ( <i>k</i> = 2) | 7  | 8                | 8               | 8               | 8               | 8               |

**Table 1:** Iteration counts for multigrid preconditioned CG using  $RT_k$  elements.

# H(div) and H(curl) multigrid in 3D (Arnold, Falk, and Winther 2000)

Find  $u \in V \subset H(\operatorname{curl})$  s.t.  $(u, v)_{L^2} + \gamma(\operatorname{curl} u, \operatorname{curl} v)_{L^2} = (f, v)_{L^2} \quad \forall v \in V.$ 

L<sup>2</sup> de Rham complex

$$H^1 \xrightarrow{\text{grad}} H(\text{curl}) \xrightarrow{\text{curl}} H(\text{div}) \xrightarrow{\text{div}} L^2$$

# H(div) and H(curl) multigrid in 3D (Arnold, Falk, and Winther 2000)

Find  $u \in V \subset H(\operatorname{curl})$  s.t.  $(u, v)_{L^2} + \gamma(\operatorname{curl} u, \operatorname{curl} v)_{L^2} = (f, v)_{L^2} \quad \forall v \in V.$ 

L<sup>2</sup> de Rham complex

#### femtable.org

- Exact sequence: ker(curl) = range(grad), ker(div) = range(curl)
- *H*(curl): star around vertices
- *H*(div): star around edges





# H(curl) multigrid in 3D (Arnold, Falk, and Winther 2000)

#### Find $u \in V \subset H(\operatorname{curl})$ s.t. $(u, v)_{L^2} + \gamma(\operatorname{curl} u, \operatorname{curl} v)_{L^2} = (f, v)_{L^2} \quad \forall v \in V.$

| -ksp_type cg                      |  |  |  |  |  |
|-----------------------------------|--|--|--|--|--|
| -pc_type mg                       |  |  |  |  |  |
| -mg_levels_                       |  |  |  |  |  |
| -pc_type python                   |  |  |  |  |  |
| -pc_python_type firedrake.PatchPC |  |  |  |  |  |
| -patch_                           |  |  |  |  |  |
| -pc_patch_construct_dim 0         |  |  |  |  |  |
| -pc patch construct type star     |  |  |  |  |  |



| Smoother \ $\gamma$                          | 0        | 10 <sup>-1</sup> | 10 <sup>0</sup> | 10 <sup>1</sup> | 10 <sup>2</sup> | 10 <sup>3</sup> |  |
|----------------------------------------------|----------|------------------|-----------------|-----------------|-----------------|-----------------|--|
| Point-Jacobi (k = 1)<br>Point-Jacobi (k = 2) | 10<br>22 | 48<br>115        | 85<br>211       | 120<br>293      | 150<br>370      | 180<br>446      |  |
| Block-Jacobi ( $k = 1$ )                     |          |                  |                 |                 |                 |                 |  |
| Block-Jacobi ( $k = 2$ )                     | 9        | 12               |                 |                 |                 | 12              |  |

**Table 2:** Iteration counts for multigrid preconditioned CG using Nedelecedge-elements of the first kind.

#### Find $u \in V \subset H(\operatorname{div})$ s.t. $(u, v)_{L^2} + \gamma(\operatorname{div} u, \operatorname{div} v)_{L^2} = (f, v)_{L^2} \quad \forall v \in V.$

| -ksp_type cg<br>-pc_type mg<br>-mg_levels_<br>-pc_type python<br>-pc_python_type firedrake<br>-patch_<br>-pc_patch_construct_di<br>-pc_patch_construct_ty | m 1      |                  |                 |                 |                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|-----------------|-----------------|-----------------|
| Smoother \ $\gamma$                                                                                                                                       | 0        | 10 <sup>-1</sup> | 10 <sup>0</sup> | 10 <sup>1</sup> | 10 <sup>2</sup> |
| Point-Jacobi (k = 1)<br>Point-Jacobi (k = 2)                                                                                                              | 11<br>26 | 63<br>180        | 109<br>366      | 146<br>531      | 180<br>687      |

Block-Jacobi (k = 1)123036363737Block-Jacobi (k = 2)1117171717

**Table 3:** Iteration counts for multigrid preconditioned CG using Nedelec face-elements of the first kind.

10<sup>3</sup>

221

844

Find  $u \in V \subset H^1$  s.t.  $(\operatorname{grad} u, \operatorname{grad} v) + \gamma(\operatorname{div} u, \operatorname{div} v) = (f, v) \quad \forall v \in V.$ 

#### 2D Stokes complex

$$H^2 \xrightarrow{\operatorname{grad}^{\perp}} H^1 \xrightarrow{\operatorname{div}} L^2$$



- Decomposition must capture ker div = range grad<sup> $\perp$ </sup>.
- · Support of HCT element is on "macro" mesh  $\Rightarrow$  MacroStar





## MacroStar



#### MacroStar

```
-ksp_type cg
-pc_type mg
-mg_levels_
  -pc_type python
  -pc_python_type firedrake.PatchPC
      -patch_
            -pc_patch_construct_dim 0
            -pc_patch_construct_type python
            -pc_patch_construct_python_type MacroStar
```

Just need to write custom adjacency to construct patch around each vertex

#### MacroStar

```
-ksp_type cg
-pc_type mg
-mg_levels_
  -pc_type python
  -pc_python_type firedrake.PatchPC
      -patch_
        -pc_patch_construct_dim 0
        -pc_patch_construct_type python
        -pc_patch_construct_python_type MacroStar
```

Just need to write custom adjacency to construct patch around each vertex

```
class MacroStar(OrderedRelaxation):
    def callback(self, dm, vertex):
        if dm.getLabelValue("MacroVertices", vertex) != 1:
            return None
        s = list(self.star(dm, vertex))
        closures = list(chain(*(self.closure(dm, e) for e in s)))
        want = [v for v in closures if dm.getLabelValue("MacroVertices", v) != 1]
        star = list(chain(*(self.star(dm, v) for v in want)))
        return s + star
```

 $(\operatorname{grad} u, \operatorname{grad} v) - (p, \operatorname{div} v) - (\operatorname{div} u, q) = (f, v) \quad \forall (v, q) \in V \times Q.$ 

#### Vanka patch

- P2-P0: loop over cells, gather closure of star
- P2-P1: loop over vertices, gather closure of star

 $(\operatorname{grad} u, \operatorname{grad} v) - (p, \operatorname{div} v) - (\operatorname{div} u, q) = (f, v) \quad \forall (v, q) \in V \times Q.$ 

#### Vanka patch

- P2-P0: loop over cells, gather closure of star
- P2-P1: loop over vertices, gather closure of star



```
-ksp_type gmres
-pc_type mg
-mg_levels_
    -pc_type python
    -pc_python_type firedrake.PatchPC
    -patch_
        -pc_patch_construct_codim 0
        -pc_patch_construct_type vanka
        -pc_patch_exclude_subspaces 1
```

 $(\operatorname{grad} u, \operatorname{grad} v) - (p, \operatorname{div} v) - (\operatorname{div} u, q) = (f, v) \quad \forall (v, q) \in V \times Q.$ 

#### Vanka patch

- P2-P0: loop over cells, gather closure of star
- P2-P1: loop over vertices, gather closure of star



```
-ksp_type gmres
-pc_type mg
-mg_levels_
   -pc_type python
   -pc_python_type firedrake.PatchPC
   -patch_
        -pc_patch_construct_dim 0
        -pc_patch_construct_type vanka
        -pc_patch_exclude_subspaces 1
```

 $(\operatorname{grad} u, \operatorname{grad} v) - (p, \operatorname{div} v) - (\operatorname{div} u, q) = (f, v) \quad \forall (v, q) \in V \times Q.$ 

#### Vanka patch

- P2-P0: loop over cells, gather closure of star
- P2-P1: loop over vertices, gather closure of star



```
-ksp_type gmres
-pc_type mg
-mg_levels_
    -pc_type python
    -pc_python_type firedrake.PatchPC
    -patch_
        -pc_patch_construct_dim 0
        -pc_patch_construct_type vanka
        -pc_patch_exclude_subspaces 1
        -pc_patch_vanka_dim 0
```

# Conclusions

- **PCPATCH** provides simple and flexible interface for subspace correction methods
- Currently works with DMPlex + PetscDS and Firedrake
- $\cdot$  Implements
  - Additive and multiplicative smoothing
  - Simultaneous smoothing of multiple fields: monolithic approaches
  - Partition of unity (or not)
  - Nonlinear relaxation (Firedrake only)
- WIP: faster application of patch solves
  - + PETSc (sadly) not designed for lots of tiny problems
  - Significant speedup from constructing patch inverse and hard-coding matvec
  - Just code Newton "by hand" for nonlinear case?
- Paper in preparation

## Thanks!

## References

- Arnold, D. N., R. S. Falk, and R. Winther (2000). "Multigrid in H(div) and H(curl)". Numerische Mathematik 85. doi:10.1007/s002110000137.
- Arnold, D. N., R. S. Falk, and R. Winther (July 1997). "Preconditioning in H(div) and Applications". Mathematics of Computation 66. doi:10.1090/S0025-5718-97-00826-0.
- Benzi, M. and M. A. Olshanskii (2006). "An Augmented Lagrangian-Based Approach to the Oseen Problem". SIAM Journal on Scientific Computing 28. doi:10.1137/050646421.
- Farrell, P. E., L. Mitchell, and F. Wechsung (2018). An augmented Lagrangian preconditioner for the 3D stationary incompressible Navier–Stokes equations at high Reynolds number. To appear in SIAM SISC. arXiv: 1810.03315 [math.NA].
- Pavarino, L. F. (1993). "Additive Schwarz methods for the p-version finite element method". Numerische Mathematik 66. doi:10.1007/BF01385709.
- Schöberl, J. (1999). "Multigrid methods for a parameter dependent problem in primal variables". Numerische Mathematik 84. doi:10.1007/s002110050465.
- Vanka, S. (1986). "Block-implicit multigrid solution of Navier-Stokes equations in primitive variables". Journal of Computational Physics 65. doi:10.1016/0021-9991(86)90008-2.
- Xu, J. (1992). "Iterative methods by space decomposition and subspace correction". SIAM Review 34. doi:10.1137/1034116.