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Some motivating schemes

Coupled multigrid for Stokes/Navier–Stokes
In the SCGS scheme four velocites and one pressure corresponding to one
finite difference node are simultaneously updated by inverting a (small)
matrix of equations.

Vanka (1986)
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Some motivating schemes

p-independent preconditioners for elliptic problems
[Each subspace is generated from] Vpi = Vp ∩ H10(Ω

′

i ) where Ω
′

i is the open
square centered at the ith vertex

Pavarino (1993)
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Some motivating schemes

Multigrid for nearly incompressible elasticity
The suggested smoother is a block Jacobi smoother, which takes care of
the kernel […]. These kernel basis functions are captured by subspaces Vl,i
as shown

Schöberl (1999)
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Some motivating schemes

Multigrid in H(div) and H(curl)
To define the Schwarz smoothers, we can use a decomposition of Vh into
local patches consisting of all elements surrounding either an edge or a
vertex.

Arnold, Falk, and Winther (2000)
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Some motivating schemes

An augmented Lagrangian approach to the Oseen problem
We use a block Gauss-Seidel method […] based on the decomposition
Vh =

∑l
i=0 Vi. […For] P2-P0 finite elements the natural choice is to gather

nodel DOFs for velocity inside ovals [around a vertex]

Benzi and Olshanskii (2006)
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Some motivating schemes

Augmented Lagrangian for 3D Navier–Stokes

Continuation

Newton solver with line search

Krylov solver (FGMRES)

Block preconditioner

Approximate Schur complement inverse

F-cycle on augmented momentum block

Coarse grid solver

LU factorization

Prolongation operator

Local solves over coarse cells

Relaxation

GMRES

Additive star iteration

Farrell, Mitchell, and Wechsung (2018)
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Parallel subspace corrections (Xu 1992)

Find u ∈ V such that

a(u, v) = (f , v) for all v ∈ V.

input : Space decomposition V =
∑J

i=1 Vi
input : Initial guess uk ∈ V
input : Weighting operators wi : Vi → Vi
output: Updated guess uk+1 ∈ V

for i = 1 to J do
Find δui ∈ Vi such that

a(δui, vi) = (f , vi)− a(uk, vi) for all vi ∈ Vi.

end
uk+1 ← uk +

∑J
i=1 wi(δui)
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Sequential subspace corrections (Xu 1992)

Find u ∈ V such that

a(u, v) = (f , v) for all v ∈ V.

input : Space decomposition V =
∑J

i=1 Vi
input : Initial guess uk ∈ V
output: Updated guess uk+1 ∈ V

for i = 1 to J do
Find δui ∈ Vi such that

a(δui, vi) = (f , vi)− a(uk+(i−1)/J, vi) for all vi ∈ Vi.

uk+i/J ← uk+(i−1)/J + δui
end
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Example space decompositions

Jacobi or Gauß-Seidel

V =
N∑
i=1

span{φi}

with {φ1, . . . , φN} a basis for V .

Domain decomposition

V = V0 +
J∑
i=1

Vi

with V0 a coarse space and Vi functions supported in Ωi ⊂ Ω.

Multigrid V-cycle

V =
2∑
l=L

Vl + V1 +
L∑
l=2

Vl

with V1 ⊂ V2 ⊂ · · · ⊂ VL = V .
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Unifying computational observation

Relaxation schemes all use subspace correction method with
problem-specific choice of space decomposition.

• Decompose space (usually) based on some mesh decomposition
• Build and solve little problems on the resulting patches
• Combine additively or multiplicatively

Challenge
Want to do this inside block preconditioners, and as a multigrid smoother.

Not sufficient to specify dof decomposition on a (single) global matrix.
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PCPATCH



PCPATCH

Requirements

• Want flexible PC⇒ change decomposition easily
• Need to nest inside more complex solvers
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PCPATCH

Idea

• Separate topological decomposition from algebraic operators
• User only provides topological description of patches
• Ask discretisation library to make the operators once decomposition is
obtained

Library support

• PETSc: DMPlex + PetscDS
-pc_type patch

• Firedrake:
-pc_type python -pc_python_type firedrake.PatchPC

-snes_type python -snes_python_type firedrake.PatchSNES
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Describing patches

• DMPlex associates dofs with topological entities in mesh
• A patch is defined by a set of these entities, PCPATCH determines the
dofs that correspond to them

• Adjacency relations defined using topological queries: often the
topological star and closure operations.

7



Describing patches

• DMPlex associates dofs with topological entities in mesh
• A patch is defined by a set of these entities, PCPATCH determines the
dofs that correspond to them

• Adjacency relations defined using topological queries: often the
topological star and closure operations.

star(vertex)
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Describing patches
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Describing patches

• Each patch defined by set of mesh entities

Builtin
Specify patches by selecting:

1. Mesh entities {pi} to iterate over (e.g. vertices, cells)
2. Adjacency relation that gathers points in patch
star entities in star(pi)

vanka entities in (closure ◦ star)(pi)
pardecomp entities in Ωi (local part of parallel mesh)

User-defined

1. Custom adjacency relation (e.g. “vertices in closure ◦ star of edges”)
2. List of patches, plus iteration order⇒ line-/plane-smoothers
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Patch assembly

3 If we just want homogeneous Dirichlet, can use list of dofs to select
from assembled global operator

3 Completely robust to discretisation library
7 Doesn’t allow matrix-free implementation
7 Doesn’t work for other transmission conditions
7 Doesn’t work for nonlinear smoothers
⇒ Callback interface to get PDE library to assemble on each patch

Callbacks
/* Patch Jacobian */
UserComputeOp(PC, Vec state, Mat operator, Patch patch, void *userctx);
/* Patch Residual */
UserComputeF(PC, Vec state, Vec residual, Patch patch, void *userctx);
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Which space decomposition?

Theorem (Parameter robust parallel subspace correction)
Find u ∈ V such that

a0(u, v) + εb(u, v) = (f , v) for all v ∈ V

with a0 symmetric positive definite and b symmetric positive semi-definite.

Denote the kernel
N := {u ∈ V : b(u, v) = 0 ∀v ∈ V}.

If the space decomposition captures the kernel

N =
∑
i

N ∩ Vi,

the resulting subspace correction method has convergence independent of ε
(Schöberl 1999).
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Which space decomposition?

Corollary
“All” we need to do is characterise the kernel: in particular the support of
the basis.

Characterising the kernel
Appropriate discrete de Rham complexes can help us finding the support
of a basis for N .
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Examples



H(div) multigrid in 2D (Arnold, Falk, and Winther 1997)

Find u ∈ V ⊂ H(div) s.t. (u, v)L2 + γ(div u, div v)L2 = (f , v)L2 ∀v ∈ V.

L2 de Rham complex

H1 grad⊥−−−→ H(div) div−→ L2

femtable.org

• Exact sequence: ker(div) = range(grad⊥)

• Need patches containing support of the Pk basis
functions⇒ star around vertices
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H(div) multigrid in 2D (Arnold, Falk, and Winther 1997)

Find u ∈ V ⊂ H(div) s.t. (u, v)L2 + γ(div u, div v)L2 = (f , v)L2 ∀v ∈ V.

-ksp_type cg
-pc_type mg
-mg_levels_

-pc_type python
-pc_python_type firedrake.PatchPC
-patch_

-pc_patch_construct_dim 0
-pc_patch_construct_type star

Smoother \ γ 0 10−1 100 101 102 103

Point-Jacobi (k = 1) 11 27 49 68 86 103
Point-Jacobi (k = 2) 10 45 71 93 113 134

Block-Jacobi (k = 1) 6 11 12 12 12 12
Block-Jacobi (k = 2) 7 8 8 8 8 8

Table 1: Iteration counts for multigrid preconditioned CG using RTk elements.
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H(div) and H(curl) multigrid in 3D (Arnold, Falk, and Winther 2000)

Find u ∈ V ⊂ H(curl) s.t. (u, v)L2 + γ(curlu, curl v)L2 = (f , v)L2 ∀v ∈ V.

L2 de Rham complex

H1 grad−−→ H(curl) curl−−→ H(div) div−→ L2

femtable.org

• Exact sequence:
ker(curl) = range(grad),
ker(div) = range(curl)

• H(curl): star around vertices
• H(div): star around edges
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H(curl) multigrid in 3D (Arnold, Falk, and Winther 2000)

Find u ∈ V ⊂ H(curl) s.t. (u, v)L2 + γ(curlu, curl v)L2 = (f , v)L2 ∀v ∈ V.

-ksp_type cg
-pc_type mg
-mg_levels_

-pc_type python
-pc_python_type firedrake.PatchPC
-patch_

-pc_patch_construct_dim 0
-pc_patch_construct_type star

Smoother \ γ 0 10−1 100 101 102 103

Point-Jacobi (k = 1) 10 48 85 120 150 180
Point-Jacobi (k = 2) 22 115 211 293 370 446

Block-Jacobi (k = 1) 9 16 18 18 18 18
Block-Jacobi (k = 2) 9 12 12 12 12 12

Table 2: Iteration counts for multigrid preconditioned CG using Nedelec
edge-elements of the first kind.
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H(div) multigrid in 3D (Arnold, Falk, and Winther 2000)

Find u ∈ V ⊂ H(div) s.t. (u, v)L2 + γ(div u, div v)L2 = (f , v)L2 ∀v ∈ V.

-ksp_type cg
-pc_type mg
-mg_levels_

-pc_type python
-pc_python_type firedrake.PatchPC
-patch_

-pc_patch_construct_dim 1
-pc_patch_construct_type star

Smoother \ γ 0 10−1 100 101 102 103

Point-Jacobi (k = 1) 11 63 109 146 180 221
Point-Jacobi (k = 2) 26 180 366 531 687 844

Block-Jacobi (k = 1) 12 30 36 36 37 37
Block-Jacobi (k = 2) 11 17 17 17 17 17

Table 3: Iteration counts for multigrid preconditioned CG using Nedelec
face-elements of the first kind.
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Nearly incompressible elasticity

Find u ∈ V ⊂ H1 s.t. (gradu, grad v) + γ(div u, div v) = (f , v) ∀v ∈ V.

2D Stokes complex

H2 grad⊥−−−→ H1 div−→ L2

• Decomposition must capture ker div = range grad⊥.
• Support of HCT element is on “macro” mesh⇒ MacroStar
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MacroStar
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MacroStar

-ksp_type cg
-pc_type mg
-mg_levels_
-pc_type python
-pc_python_type firedrake.PatchPC
-patch_
-pc_patch_construct_dim 0
-pc_patch_construct_type python
-pc_patch_construct_python_type MacroStar

Just need to write custom adjacency to construct patch around each vertex

class MacroStar(OrderedRelaxation):
def callback(self, dm, vertex):

if dm.getLabelValue("MacroVertices", vertex) != 1:
return None

s = list(self.star(dm, vertex))
closures = list(chain(*(self.closure(dm, e) for e in s)))
want = [v for v in closures if dm.getLabelValue("MacroVertices", v) != 1]
star = list(chain(*(self.star(dm, v) for v in want)))
return s + star
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MacroStar
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Monolithic (coupled) smoothers

Find (u,p) ∈ V × Q ⊂ (H1)d × L2 s.t.

(gradu, grad v)− (p, div v)− (div u,q) = (f , v) ∀(v,q) ∈ V × Q.

Vanka patch
Solve simultaneously for (u,p) on each pressure dof, gathering those
velocity dofs that couple to the pressure dof.
• P2-P0: loop over cells, gather closure of star
• P2-P1: loop over vertices, gather closure of star
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Conclusions

• PCPATCH provides simple and flexible interface for subspace
correction methods

• Currently works with DMPlex + PetscDS and Firedrake
• Implements

• Additive and multiplicative smoothing
• Simultaneous smoothing of multiple fields: monolithic approaches
• Partition of unity (or not)
• Nonlinear relaxation (Firedrake only)

• WIP: faster application of patch solves
• PETSc (sadly) not designed for lots of tiny problems
• Significant speedup from constructing patch inverse and hard-coding
matvec

• Just code Newton “by hand” for nonlinear case?
• Paper in preparation

Thanks!
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