A8
@ Firedrake P Durham

University

PCPATCH: topological construction of multigrid
relaxation methods

Lawrence Mitchell”
P.E. Farrell (Oxford) M. G. Knepley (Buffalo) F. Wechsung (Oxford)
September 27,2019

"Department of Computer Science, Durham University
“lawrence.mitchell@durham.ac.uk

Some motivating schemes

Coupled multigrid for Stokes/Navier-Stokes
In the SCGS scheme four velocites and one pressure corresponding to one

finite difference node are simultaneously updated by inverting a (small)
matrix of equations.

{U.‘,me

Ui_1p2,j > Yiv1y2,)

Vanka (1986)

Some motivating schemes

p-independent preconditioners for elliptic problems

[Each subspace is generated from] V¥ = VP N HB(Q;) where Q,'- is the open
square centered at the ith vertex

Qi) L,
Q,“ Q;,

Pavarino (1993)

Some motivating schemes

Multigrid for nearly incompressible elasticity

The suggested smoother is a block Jacobi smoother, which takes care of
the kernel [...]. These kernel basis functions are captured by subspaces V, ;
as shown

Schoberl (1999)

Some motivating schemes

Multigrid in H(div) and H(curl)
To define the Schwarz smoothers, we can use a decomposition of Vj, into

local patches consisting of all elements surrounding either an edge or a
vertex.

NN

Arnold, Falk, and Winther (2000)

Some motivating schemes

An augmented Lagrangian approach to the Oseen problem

We use a block Gauss-Seidel method [...] based on the decomposition
Vy = Zf‘:o V.. [...For] P2-PO finite elements the natural choice is to gather
nodel DOFs for velocity inside ovals [around a vertex]

Benzi and Olshanskii (2006)

Some motivating schemes

Augmented Lagrangian for 3D Navier-Stokes

Newton solver with line search |

Krylov solver (FGMRES)

Block preconditioner

Approximate Schur complement inverse |

F-cycle on augmented momentum block|

Coarse grid solver

LU factorization

Prolongation operator

Local solves over coarse cells|

Additive star iteration

Farrell, Mitchell, and Wechsung (2018)

Parallel subspace corrections (Xu 1992)

Find u € V such that

a(u,v) = (f,v) forallv e V.

input : Space decomposition V = Z’,-:1 %
input : Initial guess u, € V

input : Weighting operators w; : V; — V;
output: Updated guess upq € V

fori=1to/do
Find du; € V; such that

a(éuf, V,') = (f, V,') — a(uh, V,‘) for all vi € V.

end
Upgr < U + Z{=1 wi(6u;)

Sequential subspace corrections (Xu 1992)

Find u € V such that
a(u,v) = (f,v) forallv e V.
input : Space decomposition V = Z’,-:1 %

input : Initial guess u, € V
output: Updated guess up,q € V

fori=1to)do
Find du; € V; such that

a(ou;,vi) = (f,vi) = a(Upy(i—), vi) for all v; € V.

Uryiy) < Urs(izyy + 0U;
end

Example space decompositions

Jacobi or GauR-Seidel

N
V="> span{¢}
i=1

with {¢1,...,én} a basis for V.

Domain decomposition

J
V=Vo+) V;
i=1

with Vg a coarse space and V; functions supported in Q; C Q.

Multigrid V-cycle

2 L
V= VitWi+d Vv
=L =2

withV, cV, c---cV,=V.

Unifying computational observation

Relaxation schemes all use subspace correction method with
problem-specific choice of space decomposition.

- Decompose space (usually) based on some mesh decomposition
- Build and solve little problems on the resulting patches

- Combine additively or multiplicatively

Unifying computational observation

Relaxation schemes all use subspace correction method with
problem-specific choice of space decomposition.
- Decompose space (usually) based on some mesh decomposition
- Build and solve little problems on the resulting patches

- Combine additively or multiplicatively

Challenge

Want to do this inside block preconditioners, and as a multigrid smoother.

Not sufficient to specify dof decomposition on a (single) global matrix.

PCPATCH

PCPATCH

- Want flexible PC = change decomposition easily

- Need to nest inside more complex solvers

PCPATCH

- Want flexible PC = change decomposition easily

- Need to nest inside more complex solvers

- Separate topological decomposition from algebraic operators

- User only provides topological description of patches

- Ask discretisation library to make the operators once decomposition is
obtained

PCPATCH

- Separate topological decomposition from algebraic operators
- User only provides topological description of patches

- Ask discretisation library to make the operators once decomposition is
obtained

Library support
- PETSc: DMPlex + PetscDS
-pc_type patch

- Firedrake:
-pc_type python -pc_python_type firedrake.PatchPC

-snes_type python -snes_python_type firedrake.PatchSNES

Describing patches

- DMP1lex associates dofs with topological entities in mesh

- A patch is defined by a set of these entities, PCPATCH determines the
dofs that correspond to them

- Adjacency relations defined using topological queries: often the
topological star and closure operations.

Describing patches

- DMP1lex associates dofs with topological entities in mesh

- A patch is defined by a set of these entities, PCPATCH determines the
dofs that correspond to them

- Adjacency relations defined using topological queries: often the
topological star and closure operations.

star(vertex)

Describing patches

- DMP1lex associates dofs with topological entities in mesh

- A patch is defined by a set of these entities, PCPATCH determines the
dofs that correspond to them

- Adjacency relations defined using topological queries: often the
topological star and closure operations.

(closure o star)(vertex)

Describing patches

- DMP1lex associates dofs with topological entities in mesh

- A patch is defined by a set of these entities, PCPATCH determines the
dofs that correspond to them

- Adjacency relations defined using topological queries: often the
topological star and closure operations.

star(edge)

Describing patches

- DMP1lex associates dofs with topological entities in mesh

- A patch is defined by a set of these entities, PCPATCH determines the
dofs that correspond to them

- Adjacency relations defined using topological queries: often the
topological star and closure operations.

(closure ostar)(edge)

Describing patches

- Each patch defined by set of mesh entities

Builtin
Specify patches by selecting:
1. Mesh entities {p;} to iterate over (e.g. vertices, cells)

2. Adjacency relation that gathers points in patch

star entities in star(p;)
vanka entities in (closure o star)(p;)
pardecomp entities in Q; (local part of parallel mesh)

User-defined

1. Custom adjacency relation (e.g. “vertices in closure o star of edges”)
2. List of patches, plus iteration order = line-/plane-smoothers

Patch assembly

v If we just want homogeneous Dirichlet, can use list of dofs to select
from assembled global operator

v Completely robust to discretisation library

X Doesn't allow matrix-free implementation

X Doesn't work for other transmission conditions

X Doesn't work for nonlinear smoothers

= Callback interface to get PDE library to assemble on each patch

Callbacks

/* Patch Jacobian =/
UserComputeOp(PC, Vec state, Mat operator, Patch patch, void =*userctx);
/* Patch Residual =/
UserComputeF(PC, Vec state, Vec residual, Patch patch, void =userctx);

Examples

Which space decomposition?

Theorem (Parameter robust parallel subspace correction)
Find u € V such that

ao(u,v) +eb(u,v) = (f,v) forallv e vV

with ap symmetric positive definite and b symmetric positive semi-definite.

Denote the kernel
N:={ueV:b(uv)=0WeV}

If the space decomposition captures the kernel

N:ZNth

the resulting subspace correction method has convergence independent of e
(Schéberl 1999).

Which space decomposition?

Corollary
“All” we need to do is characterise the kernel: in particular the support of
the basis.

Characterising the kernel

Appropriate discrete de Rham complexes can help us finding the support
of a basis for V.

Examples

H(div) multigrid in 2D (Arnold, Falk, and Winther 1997)

Find u € V. C H(div) st. (u,Vv) +~(divu,divv). = (f,v): YveV.
> de Rham complex

4 .
H' 220 H(div) 2% 12

1

femtable.org

H(div) multigrid in 2D (Arnold, Falk, and Winther 1997)

Find u € V. C H(div) st. (u,Vv) +~(divu,divv). = (f,v): YveV.

1> de Rham complex

femtable.org

1

femtable.org

H(div) multigrid in 2D (Arnold, Falk, and Winther 1997)

Find u € V. C H(div) st. (u,Vv) +~(divu,divv). = (f,v): YveV.

1> de Rham complex

femtable.org
- Exact sequence: ker(div) = range(grad™)) T
- Need patches containing support of the P basis
functions = star around vertices

-
-

1

femtable.org

H(div) multigrid in 2D (Arnold, Falk, and Winther 1997)

Find u € V. C H(div) st. (u,Vv) +~(divu,divv). = (f,v): YveV.

-ksp_type cg 4
-pc_type mg
-mg_levels_ 9 e
-pc_type python
-pc_python_type firedrake.PatchPC
-patch_ > >
-pc_patch_construct_dim 0
-pc_patch_construct_type star

-

-

Smoother \ ~ \ 0 10" 10° 10" 102 103
Point-Jacobi (k 11 49 68 86 103
Point-Jacobi (l? 10 71 93 113 134

Block-Jacobi (k = 12 12 12 12
Block-Jacobi (k = 8 8 8 8

Table 1: Iteration counts for multigrid preconditioned CG using RT, elements.

H(div) and H(curl) multigrid in 3D (Arnold, Falk, and Winther 2000)

Find u € V C H(curl) st. (u,Vv) +~v(curlu,curlv): = (f,v)2 Vv e V.

> de Rham complex

H' 29, H(curl) < H(div) 2% 12

femtable.org

H(div) and H(curl) multigrid in 3D (Arnold, Falk, and Winther 2000)

Find u € V C H(curl) st. (u,Vv) +~v(curlu,curlv): = (f,v)2 Vv e V.
> de Rham complex

£ H(curl) <o,y H(div) —

a

P, Eif(as) N1 PiR(a)

- Exact sequence: s ’
ker(curl) = range(grad), 4 1
ker(div) = range(curl) N '

- H(curl): star around vertices 4 3 +

4
v v

- H(div): star around edges

femtable.org

H(curl) multigrid in 3D (Arnold, Falk, and Winther 2000)

Findu € V C H(curl) st (u,v) +~(curlu,curlv)2 = (f,v). W eV.

-ksp_type cg
-pc_type mg
-mg_levels_
-pc_type python
-pc_python_type firedrake.PatchPC
-patch_
-pc_patch_construct_dim 0
-pc_patch_construct_type star

Smoother \ ~ \o 10-" 10° 10" 102 103

Point-Jacobi (k 10 48 85 120 150 180
POIntJacobl(l? 22 115 211 293 370 446

Block-Jacobi (kR = 9 16 18 18 18 18
Block-Jacobi (kR = 9 12 12 12 12 12

Table 2: Iteration counts for multigrid preconditioned CG using Nedelec

edge-elements of the first kind.
14

H(div) multigrid in 3D (Arnold, Falk, and Winther 2000)

Find u € V. C H(div) st. (u,Vv) +~(divu,divv). = (f,v): YveV.

-ksp_type cg 4
-pc_type mg
-mg_levels_ T e
-pc_type python N
-pc_python_type firedrake.PatchPC
-patch_ < > >
-pc_patch_construct_dim 1
-pc_patch_construct_type star

-

Smoother \ ~ \o 10-" 10° 10" 102 103

Point-Jacobi (k 11 63 109 146 180 221
POIntJacobl(l? 26 180 366 531 687 844

Block-Jacobi (kR =) 12 30 36 36 37 37
Block-Jacobi (R =2) | 11 17 17 17 17 17

Table 3: Iteration counts for multigrid preconditioned CG using Nedelec

face-elements of the first kind.
15

Nearly incompressible elasticity

FindueV c H' st (gradu,gradv) + v(divu,divv) = (f,v) YveV.

2D Stokes complex

H2 grad® H1 div L2

- Decomposition must capture ker div = range grad™.
- Support of HCT element is on “macro” mesh = MacroStar

16

MacroStar

-ksp_type cg
-pc_type mg
-mg_levels_
-pc_type python
-pc_python_type firedrake.PatchPC
-patch_
-pc_patch_construct_dim 0
-pc_patch_construct_type python
-pc_patch_construct_python_type MacroStar

Just need to write custom adjacency to construct patch around each vertex

MacroStar

-ksp_type cg
-pc_type mg
-mg_levels_
-pc_type python
-pc_python_type firedrake.PatchPC
-patch_
-pc_patch_construct_dim 0
-pc_patch_construct_type python
-pc_patch_construct_python_type MacroStar

Just need to write custom adjacency to construct patch around each vertex

class MacroStar(OrderedRelaxation):
def callback(self, dm, vertex):
if dm.getlLabelValue("MacroVertices", vertex) != 1:
return None
s = list(self.star(dm, vertex))
closures = list(chain(*(self.closure(dm, e) for e in s)))
want = [v for v in closures if dm.getlLabelValue("MacroVertices", v) != 1]
star = list(chain(x*(self.star(dm, v) for v in want)))
return s + star

Monolithic (coupled) smoothers

Find (u,p) € Vx Q C (H") x L? st.
(gradu,gradv) — (p,divv) — (divu,q) = (f,v) V(v,q) €V x Q.

Vanka patch

Solve simultaneously for (u, p) on each pressure dof, gathering those
velocity dofs that couple to the pressure dof.
- P2-P0: loop over cells, gather closure of star

- P2-P1: loop over vertices, gather closure of star

Monolithic (coupled) smoothers

Find (u,p) € Vx Q C (H") x L? st.
(gradu,gradv) — (p,divv) — (divu,q) = (f,v) V(v,q) €V x Q.

Vanka patch

Solve simultaneously for (u, p) on each pressure dof, gathering those
velocity dofs that couple to the pressure dof.
- P2-P0: loop over cells, gather closure of star

- P2-P1: loop over vertices, gather closure of star

-ksp_type gmres
-pc_type mg
-mg_levels_

-pc_type python
2 2 L 2 -pc_python_type firedrake.PatchPC
-patch_
* * -pc_patch_construct_codim 0
-pc_patch_construct_type vanka
* * -pc_patch_exclude_subspaces 1

Monolithic (coupled) smoothers

Find (u,p) € Vx Q C (H") x L? st.
(gradu,gradv) — (p,divv) — (divu,q) = (f,v) V(v,q) €V xQ.

Vanka patch

Solve simultaneously for (u, p) on each pressure dof, gathering those
velocity dofs that couple to the pressure dof.
- P2-P0: loop over cells, gather closure of star

- P2-P1: loop over vertices, gather closure of star

-ksp_type gmres
-pc_type mg

-mg_levels_
-pc_type python
-pc_python_type firedrake.PatchPC

-patch_

-pc_patch_construct_dim 0
-pc_patch_construct_type vanka
-pc_patch_exclude_subspaces 1

Monolithic (coupled) smoothers

Find (u,p) € Vx Q C (H") x L? st.
(gradu,gradv) — (p,divv) — (divu,q) = (f,v) V(v,q) €V x Q.

Vanka patch

Solve simultaneously for (u, p) on each pressure dof, gathering those
velocity dofs that couple to the pressure dof.
- P2-PO0: loop over cells, gather closure of star

- P2-P1: loop over vertices, gather closure of star

-ksp_type gmres
-pc_type mg
-mg_levels_
-pc_type python
-pc_python_type firedrake.PatchPC
-patch_
-pc_patch_construct_dim 0
-pc_patch_construct_type vanka
-pc_patch_exclude_subspaces 1
-pc_patch_vanka_dim 0

Conclusions

- PCPATCH provides simple and flexible interface for subspace
correction methods

- Currently works with DMPlex + PetscDS and Firedrake

- Implements

- Additive and multiplicative smoothing
- Simultaneous smoothing of multiple fields: monolithic approaches
- Partition of unity (or not)
- Nonlinear relaxation (Firedrake only)
- WIP: faster application of patch solves
- PETSc (sadly) not designed for lots of tiny problems
- Significant speedup from constructing patch inverse and hard-coding
matvec
- Just code Newton “by hand” for nonlinear case?

- Paper in preparation

Thanks!

19

References

> Arnold, D. N, R. S. Falk, and R. Winther (2000). “Multigrid in H(div) and H(curl)". Numerische
Mathematik 85. doi:10.1007/s6002110000137.

» Arnold, D. N, R. S. Falk, and R. Winther (July 1997). “Preconditioning in H(div) and Applications”.
Mathematics of Computation 66. doi:10.1090/S0025-5718-97-00826-0.

» Benzi, M. and M. A. Olshanskii (2006). “An Augmented Lagrangian-Based Approach to the Oseen
Problem”. SIAM Journal on Scientific Computing 28. doi:10.1137/050646421.

> Farrell, P. E, L. Mitchell, and F. Wechsung (2018). An augmented Lagrangian preconditioner for the 3D
stationary incompressible Navier-Stokes equations at high Reynolds number. To appear in SIAM
SISC. arXiv: 1810.03315 [math.NA].

> Pavarino, L. F. (1993). “Additive Schwarz methods for the p-version finite element method”.
Numerische Mathematik 66. doi:10.1007/BF01385709.

> Schoberl, J. (1999). “Multigrid methods for a parameter dependent problem in primal variables”.
Numerische Mathematik 84. doi:10.1007/s002110050465.

> Vanka, S. (1986). “Block-implicit multigrid solution of Navier-Stokes equations in primitive variables”.
Journal of Computational Physics 65. doi:10.1016/0021-9991(86)90008-2.

> Xu,). (1992). “Iterative methods by space decomposition and subspace correction”. SIAM Review 34.
doi:10.1137/1034116.

http://dx.doi.org/10.1007/s002110000137
http://dx.doi.org/10.1090/S0025-5718-97-00826-0
http://dx.doi.org/10.1137/050646421
https://arxiv.org/abs/1810.03315
http://dx.doi.org/10.1007/BF01385709
http://dx.doi.org/10.1007/s002110050465
http://dx.doi.org/10.1016/0021-9991(86)90008-2
http://dx.doi.org/10.1137/1034116

	PCPATCH
	Examples
	Examples
	Appendix

